pandas.rename重命名

rename(mapper=None, index=None, columns=None, axis=None, copy=True, inplace=False, level=None) method of pandas.core.frame.DataFrame instance
    Alter axes labels.
    
    Function / dict values must be unique (1-to-1)必须一一对应. Labels not contained in
    a dict / Series will be left as-is. Extra labels listed don't throw an
    error.
    
    See the :ref:`user guide <basics.rename>` for more.
    
    Parameters
    ----------
    mapper, index, columns : dict-like or function, optional
        dict-like or functions transformations to apply to
        that axis' values. Use either ``mapper`` and ``axis`` to
        specify the axis to target with ``mapper``, or ``index`` and
        ``columns``.
    axis : int or str, optional
        Axis to target with ``mapper``. Can be either the axis name
        ('index', 'columns') or number (0, 1). The default is 'index'.
    copy : boolean, default True
        Also copy underlying data
    inplace : boolean, default False返回一个新的值
        Whether to return a new %(klass)s. If True then value of copy is
        ignored.丢掉copy
    level : int or level name, default None
        In case of a MultiIndex, only rename labels in the specified
        level.
    
    Returns
    -------
    renamed : DataFrame
    
    See Also
    --------
    pandas.DataFrame.rename_axis
    
    Examples
    --------
    
    ``DataFrame.rename`` supports two calling conventions
    
    * ``(index=index_mapper, columns=columns_mapper, ...)``
    * ``(mapper, axis={'index', 'columns'}, ...)``
    
    We *highly* recommend using keyword arguments to clarify your
    intent.
    
    >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
    >>> df.rename(index=str, columns={"A": "a", "B": "c"})
       a  c
    0  1  4
    1  2  5
    2  3  6
    
    >>> df.rename(index=str, columns={"A": "a", "C": "c"})
       a  B
    0  1  4
    1  2  5
    2  3  6
    
    Using axis-style parameters
    
    >>> df.rename(str.lower, axis='columns')
       a  b
    0  1  4
    1  2  5
    2  3  6
    
    >>> df.rename({1: 2, 2: 4}, axis='index')
       A  B
    0  1  4
    2  2  5
    4  3  6

上一篇:dblink的使用


下一篇:pandas.merge合并