大数据量性能优化之分页查询(上)

大数据量性能优化之分页查询(上)刷帖子翻页需要分页查询,搜索商品也需分页查询。当遇到上千万、上亿数据量,怎么快速拉取全量数据呢?

比如:

  • 大商家拉取每月千万级别的订单数量到自己独立的ISV做财务统计
  • 拥有百万千万粉丝的大v,给全部粉丝推送消息

案例

常见错误写法

SELECT *
FROM table
where kid = 1342
  and type = 1
order id asc
limit 149420,20;

典型的排序+分页查询:

order by col limit N,OFFSET M

MySQL 执行此类SQL时:先扫描到N行,再取 M行。

N越大,MySQL需扫描更多数据定位到具体的N行,这会耗费大量的I/O成本和时间成本。

为什么上面的SQL写法扫描数据会慢?


  • t是个索引组织表,key idx_kid_type(kid,type)

大数据量性能优化之分页查询(上)

符合kid=3 and type=1 的记录有很多行,我们取第 9,10行。

select * from t where kid =3 and type=1 order by id desc 8,2;

对于Innodb,根据 idx_kid_type 二级索引里面包含的主键去查找对应行。

对百万千万级记录,索引大小可能和数据大小相差无几,cache在内存中的索引数量有限,而且二级索引和数据叶子节点不在同一物理块存储,二级索引与主键的相对无序映射关系,也会带来大量随机I/O请求,N越大越需遍历大量索引页和数据叶,需要耗费的时间就越久。

大数据量性能优化之分页查询(上)

由于上面大分页查询耗时长,是否真的有必要完全遍历“无效数据”?

若需要:

limit 8,2

跳过前面8行无关数据页的遍历,可直接通过索引定位到第9、10行,这样是不是更快?

这就是延迟关联的核心思想:通过使用覆盖索引查询返回需要的主键,再根据主键关联原表获得需要的数据,而非通过二级索引获取主键再通过主键遍历数据页。

大数据量性能优化之分页查询(上)

通过如上分析可得,通过常规方式进行大分页查询慢的原因,也知道了提高大分页查询的具体方法。

一般分页查询

简单的 limit 子句。limit 子句声明如下:

SELECT * FROM table LIMIT 
    [offset,] rows | rows OFFSET offset

limit 子句用于指定 select 语句返回的记录数,注意:

  • offset 指定第一个返回记录行的偏移量,默认为0
    初始记录行的偏移量是0,而非1
  • rows 指定返回记录行的最大数量
    rows 为 -1 表示检索从某个偏移量到记录集的结束所有的记录行。


若只给定一个参数:它表示返回最大的记录行数目。

实例:

select * from orders_history where type=8 limit 1000,10;

orders_history 表查询offset: 1000开始之后的10条数据,即第1001条到第1010条数据(1001 <= id <= 1010)。

数据表中的记录默认使用主键(id)排序,上面结果等价于:

select * from orders_history where type=8 
    order by id limit 10000,10;

三次查询时间分别为:

3040 ms
3063 ms
3018 ms

针对这种查询方式,下面测试查询记录量对时间的影响:

select * from orders_history where type=8 limit 10000,1;
select * from orders_history where type=8 limit 10000,10;
select * from orders_history where type=8 limit 10000,100;
select * from orders_history where type=8 limit 10000,1000;
select * from orders_history where type=8 limit 10000,10000;

三次查询时间:

查询1条记录:3072ms 3092ms 3002ms
查询10条记录:3081ms 3077ms 3032ms
查询100条记录:3118ms 3200ms 3128ms
查询1000条记录:3412ms 3468ms 3394ms
查询10000条记录:3749ms 3802ms 3696ms

在查询记录量低于100时,查询时间基本无差距,随查询记录量越来越大,消耗时间越多。

针对查询偏移量的测试:

select * from orders_history where type=8 limit 100,100;
select * from orders_history where type=8 limit 1000,100;
select * from orders_history where type=8 limit 10000,100;
select * from orders_history where type=8 limit 100000,100;
select * from orders_history where type=8 limit 1000000,100;

三次查询时间如下:

查询100偏移:25ms 24ms 24ms
查询1000偏移:78ms 76ms 77ms
查询10000偏移:3092ms 3212ms 3128ms
查询100000偏移:3878ms 3812ms 3798ms
查询1000000偏移:14608ms 14062ms 14700ms

随着查询偏移的增大,尤其查询偏移大于10万以后,查询时间急剧增加。

这种分页查询方式会从DB的第一条记录开始扫描,所以越往后,查询速度越慢,而且查询数据越多,也会拖慢总查询速度。

优化

  • 前端加缓存、搜索,减少落到库的查询操作
    比如海量商品可以放到搜索里面,使用瀑布流的方式展现数据
  • 优化SQL 访问数据的方式
    直接快速定位到要访问的数据行。推荐使用"延迟关联"的方法来优化排序操作,何谓"延迟关联" :通过使用覆盖索引查询返回需要的主键,再根据主键关联原表获得需要的数据。
  • 使用书签方式 ,记录上次查询最新/大的id值,向后追溯 M行记录

延迟关联

优化前

explain SELECT id, cu_id, name, info, biz_type, gmt_create, gmt_modified,start_time, end_time, market_type, back_leaf_category,item_status,picuture_url FROM relation where biz_type ='0' AND end_time >='2014-05-29' ORDER BY id asc LIMIT 149420 ,20;
+----+-------------+-------------+-------+---------------+-------------+---------+------+--------+-----+
| id  | select_type | table           | type  | possible_keys | key            | key\_len | ref  | rows   | Extra   |
+----+-------------+-------------+-------+---------------+-------------+---------+------+--------+-----+
| 1  | SIMPLE      | relation    | range | ind\_endtime   | ind\_endtime | 9       | NULL | 349622 | Using                                                                                                                       where; Using filesort |
+----+-------------+-------------+-------+---------------+-------------+---------+------+--------+-----+

执行时间:

20 rows in set (1.05 sec)

优化后:

explain SELECT a.* FROM relation a, (select id from relation where biz_type ='0' AND end\_time >='2014-05-29' ORDER BY id asc LIMIT 149420 ,20 ) b where a.id=b.id;
+----+-------------+-------------+--------+---------------+---------+---------+------+--------+-------+
| id | select_type | table       | type   | possible_keys | key     | key_len | ref  | rows   | Extra |
+----+-------------+-------------+--------+---------------+---------+---------+------+--------+-------+
| 1  | PRIMARY     | <derived2>  | ALL    | NULL          | NULL    | NULL    | NULL | 20     |       |
| 1  | PRIMARY     | a           | eq_ref | PRIMARY       | PRIMARY | 8       | b.id | 1      |       |
| 2  | DERIVED     | relation    | index  | ind_endtime   | PRIMARY | 8       | NULL | 733552 |       |
+----+-------------+-------------+--------+---------------+---------+---------+------+--------+-------+

执行时间:

20 rows in set (0.36 sec)

优化后 执行时间 为原来的1/3 。

上一篇:ECS学习心得4


下一篇:MySQL 百万级数据,怎么做分页查询?