空间变换器网络

文章目录

1.加载数据

在这篇文章中,我们尝试了经典的 MNIST 数据集。使用标准卷积网络增强空间变换器网络。

from six.moves import urllib
opener = urllib.request.build_opener()
opener.addheaders = [('User-agent', 'Mozilla/5.0')]
urllib.request.install_opener(opener)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Training dataset
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST(root='.', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])), batch_size=64, shuffle=True, num_workers=4)
# Test dataset
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST(root='.', train=False, transform=transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
    ])), batch_size=64, shuffle=True, num_workers=4)

2.什么是空间变换器网络?

空间变换器网络归结为三个主要组成部分:

  • 本地网络(Localisation Network)是常规CNN,其对变换参数进行回归。不会从该数据集中明确地学习转换,而是网络自动学习增强 全局准确性的空间变换。
  • 网格生成器( Grid Genator)在输入图像中生成与输出图像中的每个像素相对应的坐标网格。
  • 采样器(Sampler)使用变换的参数并将其应用于输入图像。

空间变换器网络
具体该网络作用可以参考该文章

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

        # Spatial transformer localization-network
        self.localization = nn.Sequential(
            nn.Conv2d(1, 8, kernel_size=7),
            nn.MaxPool2d(2, stride=2),
            nn.ReLU(True),
            nn.Conv2d(8, 10, kernel_size=5),
            nn.MaxPool2d(2, stride=2),
            nn.ReLU(True)
        )

        # Regressor for the 3 * 2 affine matrix
        self.fc_loc = nn.Sequential(
            nn.Linear(10 * 3 * 3, 32),
            nn.ReLU(True),
            nn.Linear(32, 3 * 2)
        )

        # Initialize the weights/bias with identity transformation
        self.fc_loc[2].weight.data.zero_()
        self.fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))

    # Spatial transformer network forward function
    def stn(self, x):
        xs = self.localization(x)
        xs = xs.view(-1, 10 * 3 * 3)
        theta = self.fc_loc(xs)
        theta = theta.view(-1, 2, 3)

        grid = F.affine_grid(theta, x.size())
        x = F.grid_sample(x, grid)

        return x

    def forward(self, x):
        # transform the input
        x = self.stn(x)

        # Perform the usual forward pass
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


model = Net().to(device)

3.训练模型

训练模型 现在我们使用 SGD(随机梯度下降)算法来训练模型。网络正在以有监督的方式学习分
类任务。同时,该模型以端到端的方式自动学习STN。

optimizer = optim.SGD(model.parameters(), lr=0.01)


def train(epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 500 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))
#
# A simple test procedure to measure the STN performances on MNIST.
#


def test():
    with torch.no_grad():
        model.eval()
        test_loss = 0
        correct = 0
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)

            # sum up batch loss
            test_loss += F.nll_loss(output, target, size_average=False).item()
            # get the index of the max log-probability
            pred = output.max(1, keepdim=True)[1]
            correct += pred.eq(target.view_as(pred)).sum().item()

        test_loss /= len(test_loader.dataset)
        print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'
              .format(test_loss, correct, len(test_loader.dataset),
                      100. * correct / len(test_loader.dataset)))

4.可视化 STN 结果

现在,我们将检查我们学习的视觉注意机制的结果。
我们定义了一个小辅助函数,以便在训练时可视化变换。

def convert_image_np(inp):
    """Convert a Tensor to numpy image."""
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    return inp

# We want to visualize the output of the spatial transformers layer
# after the training, we visualize a batch of input images and
# the corresponding transformed batch using STN.


def visualize_stn():
    with torch.no_grad():
        # Get a batch of training data
        data = next(iter(test_loader))[0].to(device)

        input_tensor = data.cpu()
        transformed_input_tensor = model.stn(data).cpu()

        in_grid = convert_image_np(
            torchvision.utils.make_grid(input_tensor))

        out_grid = convert_image_np(
            torchvision.utils.make_grid(transformed_input_tensor))

        # Plot the results side-by-side
        f, axarr = plt.subplots(1, 2)
        axarr[0].imshow(in_grid)
        axarr[0].set_title('Dataset Images')

        axarr[1].imshow(out_grid)
        axarr[1].set_title('Transformed Images')

if __name__ == '__main__':
	for epoch in range(1, 20 + 1):
	    train(epoch)
	    test()
	
	# Visualize the STN transformation on some input batch
	visualize_stn()
	
	plt.ioff()
	plt.show()

输出结果:

Train Epoch: 1 [0/60000 (0%)]	Loss: 2.317233
Train Epoch: 1 [32000/60000 (53%)]	Loss: 1.035397

Test set: Average loss: 0.2624, Accuracy: 9272/10000 (93%)

Train Epoch: 2 [0/60000 (0%)]	Loss: 0.524522
Train Epoch: 2 [32000/60000 (53%)]	Loss: 0.519621

Test set: Average loss: 0.2160, Accuracy: 9328/10000 (93%)

Train Epoch: 3 [0/60000 (0%)]	Loss: 0.677090
Train Epoch: 3 [32000/60000 (53%)]	Loss: 0.174913

Test set: Average loss: 0.0999, Accuracy: 9676/10000 (97%)

Train Epoch: 4 [0/60000 (0%)]	Loss: 0.280676
Train Epoch: 4 [32000/60000 (53%)]	Loss: 0.448485

Test set: Average loss: 0.0800, Accuracy: 9755/10000 (98%)

Train Epoch: 5 [0/60000 (0%)]	Loss: 0.364630
Train Epoch: 5 [32000/60000 (53%)]	Loss: 0.380116

Test set: Average loss: 0.0710, Accuracy: 9785/10000 (98%)

Train Epoch: 6 [0/60000 (0%)]	Loss: 0.233124
Train Epoch: 6 [32000/60000 (53%)]	Loss: 0.080830

Test set: Average loss: 0.0661, Accuracy: 9798/10000 (98%)

Train Epoch: 7 [0/60000 (0%)]	Loss: 0.093886
Train Epoch: 7 [32000/60000 (53%)]	Loss: 0.117194

Test set: Average loss: 0.0621, Accuracy: 9821/10000 (98%)

Train Epoch: 8 [0/60000 (0%)]	Loss: 0.164851
Train Epoch: 8 [32000/60000 (53%)]	Loss: 0.084818

Test set: Average loss: 0.1057, Accuracy: 9682/10000 (97%)

Train Epoch: 9 [0/60000 (0%)]	Loss: 0.178490
Train Epoch: 9 [32000/60000 (53%)]	Loss: 0.066079

Test set: Average loss: 0.0614, Accuracy: 9822/10000 (98%)

Train Epoch: 10 [0/60000 (0%)]	Loss: 0.090977
Train Epoch: 10 [32000/60000 (53%)]	Loss: 0.106222

Test set: Average loss: 0.0610, Accuracy: 9813/10000 (98%)

Train Epoch: 11 [0/60000 (0%)]	Loss: 0.079447
Train Epoch: 11 [32000/60000 (53%)]	Loss: 0.103146

Test set: Average loss: 0.0516, Accuracy: 9851/10000 (99%)

Train Epoch: 12 [0/60000 (0%)]	Loss: 0.096039
Train Epoch: 12 [32000/60000 (53%)]	Loss: 0.152670

Test set: Average loss: 0.0871, Accuracy: 9754/10000 (98%)

Train Epoch: 13 [0/60000 (0%)]	Loss: 0.250616
Train Epoch: 13 [32000/60000 (53%)]	Loss: 0.095682

Test set: Average loss: 0.0510, Accuracy: 9855/10000 (99%)

Train Epoch: 14 [0/60000 (0%)]	Loss: 0.159322
Train Epoch: 14 [32000/60000 (53%)]	Loss: 0.093004

Test set: Average loss: 0.0486, Accuracy: 9856/10000 (99%)

Train Epoch: 15 [0/60000 (0%)]	Loss: 0.273801
Train Epoch: 15 [32000/60000 (53%)]	Loss: 0.220219

Test set: Average loss: 0.0568, Accuracy: 9829/10000 (98%)

Train Epoch: 16 [0/60000 (0%)]	Loss: 0.237934
Train Epoch: 16 [32000/60000 (53%)]	Loss: 0.105854

Test set: Average loss: 0.0538, Accuracy: 9846/10000 (98%)

Train Epoch: 17 [0/60000 (0%)]	Loss: 0.409603
Train Epoch: 17 [32000/60000 (53%)]	Loss: 0.110827

Test set: Average loss: 0.0843, Accuracy: 9753/10000 (98%)

Train Epoch: 18 [0/60000 (0%)]	Loss: 0.115920
Train Epoch: 18 [32000/60000 (53%)]	Loss: 0.143565

Test set: Average loss: 0.0404, Accuracy: 9883/10000 (99%)

Train Epoch: 19 [0/60000 (0%)]	Loss: 0.027614
Train Epoch: 19 [32000/60000 (53%)]	Loss: 0.086963

Test set: Average loss: 0.0526, Accuracy: 9849/10000 (98%)

Train Epoch: 20 [0/60000 (0%)]	Loss: 0.229980
Train Epoch: 20 [32000/60000 (53%)]	Loss: 0.210401

Test set: Average loss: 0.0462, Accuracy: 9859/10000 (99%)
上一篇:linux 常规操作


下一篇:npm常用配置