深度学习

python实现神经网络
import numpy
import scipy.special

class neuralNetwork:

# initialise the neural network
def __init__(self,inputnodes,hiddennodes,ouputnodes,learningrate):
    # set number of nodes in  each input,hidden,outpit layer
    self.inodes = inputnodes
    self.hnodes = hiddennodes
    self.onodes = ouputnodes

    # learning rate
    self.lr = learningrate

    # link weight matrices ,wih and who
    # weights inside the arrays are w_i_j ,where link is form node i to node j in the next layer
    # w11 w21
    # w12 w22 etc
    # self.wih = (numpy.random.rand(self.hnodes,self.inodes) - 0.5)
    # self.who = (numpy.random.rand(self.onodes,self.hnodes) - 0.5)
    # 权重可采用正态分布,平均值为0,标准方差为传入连接数目的开方,即1/根号(连接数目)
    self.wih = numpy.random.normal(0.0,pow(self.hnodes,-0.5),(self.hnodes,self.inodes))
    self.who = numpy.random.normal(0.0,pow(self.onodes,-0.5),(self.onodes,self.hnodes))

    # activation function is the sigmoid function
    self.activation_function = lambda x:scipy.special.expit(x)

    pass

# new code 1
# train the model 
# 分成两个部分,第一个部分是针对给定的样本计算输出,如果此时的权重参数是最佳的,那么就直接获得了预测结果
# 第二部分,将输出与期望输出进行对比,使用差值指导权重的更新 
# train the neural network
# 训练时需要传入训练集和训练的标签
def train(self,inputs_list,targets_list):
    # convert inputs list into 2d array
    inputs = numpy.array(inputs_list,ndmin=2).T
    # calculate signals into hidden layer
    hidden_inputs = numpy.dot(self.wih,inputs)
    # calculate signals emerging from hidden layer
    hidden_outputs = self.activation_function(hidden_inputs)
    # calculate signals into final outputs layers
    final_inputs = numpy.dot(self.who,hidden_outputs)
    # calculate the signals  emerging from final output layer
    final_outputs = self.activation_function(final_inputs)

    # convert targets list into 2d array
    targets = numpy.array(targets_list,ndmin=2).T
    
    # error is the (target - final_outputs)
    output_errors = targets - final_outputs 

    # errors_hidden = weights^T_hidden . errors_output
    # hidden layer error is the output_errors,split by weights, recombined at hidden nodes
    hidden_errors = numpy.dot(self.who.T,output_errors)

    # update the weights for the links between the hidden and output layers
    # △w_j,k = a * E_k * sigmoid(o_k) * (1 - sigmoid(o_k)) · o_j T
    self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0- final_outputs))
        ,numpy.transpose(hidden_outputs)) 
    # update the weights for the links between the input and hedden layers
    self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0-hidden_outputs)),numpy.transpose(inputs))
    


    pass

# query the neural network
# 接受输入,返回输出
# 输入层的信号,通过隐藏层,最后从输出层输出,当信号给入隐藏节点和
# 输出节点时,,还使用链接权重调整信号,使用s激活函数抑制信号
def query(self,inputs_list):
    # convert inputs list into 2d array
    inputs = numpy.array(inputs_list,ndmin=2).T
    # calculate signals into hidden layer
    hidden_inputs = numpy.dot(self.wih,inputs)
    # calculate signals emerging from hidden layer
    hidden_outputs = self.activation_function(hidden_inputs)
    # calculate signals into final outputs layers
    final_inputs = numpy.dot(self.who,hidden_outputs)
    # calculate the signals  emerging from final output layer
    final_outputs = self.activation_function(final_inputs)
    
    return final_outputs

中草药识别
class ConvPool(paddle.nn.Layer):
'''卷积+池化'''
def init(self,
num_channels,
num_filters,
filter_size,
pool_size,
pool_stride,
groups,
conv_stride=1,
conv_padding=1,
):
super(ConvPool, self).init()

    for i in range(groups):
        self.add_sublayer(   #添加子层实例
            'bb_%d' % i,
            paddle.nn.Conv2D(         # layer
            in_channels=num_channels, #通道数
            out_channels=num_filters,   #卷积核个数
            kernel_size=filter_size,   #卷积核大小
            stride=conv_stride,        #步长
            padding = conv_padding,    #padding
            )
        )
        self.add_sublayer(
            'relu%d' % i,
            paddle.nn.ReLU()
        )
        num_channels = num_filters
        

    self.add_sublayer(
        'Maxpool',
        paddle.nn.MaxPool2D(
        kernel_size=pool_size,           #池化核大小
        stride=pool_stride               #池化步长
        )
    )

def forward(self, inputs):
    x = inputs
    for prefix, sub_layer in self.named_children():
        # print(prefix,sub_layer)
        x = sub_layer(x)
    return x

class VGGNet(paddle.nn.Layer):

def __init__(self):
    super(VGGNet, self).__init__()       
    self.convpool01 = ConvPool(
        3, 64, 3, 2, 2, 2)  #3:通道数,64:卷积核个数,3:卷积核大小,2:池化核大小,2:池化步长,2:连续卷积个数
    self.convpool02 = ConvPool(
        64, 128, 3, 2, 2, 2)
    self.convpool03 = ConvPool(
        128, 256, 3, 2, 2, 3) 
    self.convpool04 = ConvPool(
        256, 512, 3, 2, 2, 3)
    self.convpool05 = ConvPool(
        512, 512, 3, 2, 2, 3)       
    self.pool_5_shape = 512 * 7* 7
    self.fc01 = paddle.nn.Linear(self.pool_5_shape, 4096)
    self.fc02 = paddle.nn.Linear(4096, 4096)
    self.fc03 = paddle.nn.Linear(4096, train_parameters['class_dim'])

def forward(self, inputs, label=None):
    # print('input_shape:', inputs.shape) #[8, 3, 224, 224]
    """前向计算"""
    out = self.convpool01(inputs)
    # print('convpool01_shape:', out.shape)           #[8, 64, 112, 112]
    out = self.convpool02(out)
    # print('convpool02_shape:', out.shape)           #[8, 128, 56, 56]
    out = self.convpool03(out)
    # print('convpool03_shape:', out.shape)           #[8, 256, 28, 28]
    out = self.convpool04(out)
    # print('convpool04_shape:', out.shape)           #[8, 512, 14, 14]
    out = self.convpool05(out)
    # print('convpool05_shape:', out.shape)           #[8, 512, 7, 7]         

    out = paddle.reshape(out, shape=[-1, 512*7*7])
    out = self.fc01(out)
    out = self.fc02(out)
    out = self.fc03(out)
    
    if label is not None:
        acc = paddle.metric.accuracy(input=out, label=label)
        return out, acc
    else:
        return out
上一篇:pytorch中如何将CPU上运行的数据模型转到GPU上运行(mnist举例)


下一篇:使用风格迁移让汉子变成套马的汉子