整数除法向上取整

整数除法向上取整

方法一

\(c++\)上,默认的除法是整数除法向下取整,那有些场景中我们需要整数除法向上取整,办法是什么呢?(这里不说证明的办法,直接给结论)

$\huge \lceil \frac{n}{m} \rceil = \lfloor \frac{n-1}{m} \rfloor +1 \ (n>0,m>0) $
有需要关心证明的看这里

给出几个示例:

#include <bits/stdc++.h>

using namespace std;

int main() {    
    int n = 13, m = 3;
    printf("%d\n", (n - 1) / m + 1);

    n = 12, m = 3;
    printf("%d\n", (n - 1) / m + 1);

    n = 11, m = 3;
    printf("%d\n", (n - 1) / m + 1);

    n = 1, m = 3;
    printf("%d\n", (n - 1) / m + 1);
    return 0;
}

结果:
整数除法向上取整

用句东北话说就是:“能除干净不?除干净有多少是多少;除不干净,再给搭一个,不占人家便宜~”

方法二

借助于C++自带的上取整函数,这个操作太妙了,好理解,我要是想使用上取整,就这个了。

res = ceil((long double) n / m) * m;
cout << res << endl;

整数除法向上取整

上一篇:LinkedHashMap


下一篇:深浅拷贝