概要
本章,会对synchronized关键字进行介绍。涉及到的内容包括:
1.
synchronized原理
2.
synchronized基本规则
3.
synchronized方法 和 synchronized代码块
4. 实例锁 和 全局锁
转载请注明出处:http://www.cnblogs.com/skywang12345/p/3479202.html
1. synchronized原理
在java中,每一个对象有且仅有一个同步锁。这也意味着,同步锁是依赖于对象而存在。
当我们调用某对象的synchronized方法时,就获取了该对象的同步锁。例如,synchronized(obj)就获取了“obj这个对象”的同步锁。
不同线程对同步锁的访问是互斥的。也就是说,某时间点,对象的同步锁只能被一个线程获取到!通过同步锁,我们就能在多线程中,实现对“对象/方法”的互斥访问。
例如,现在有两个线程A和线程B,它们都会访问“对象obj的同步锁”。假设,在某一时刻,线程A获取到“obj的同步锁”并在执行一些操作;而此时,线程B也企图获取“obj的同步锁”
—— 线程B会获取失败,它必须等待,直到线程A释放了“该对象的同步锁”之后线程B才能获取到“obj的同步锁”从而才可以运行。
2. synchronized基本规则
我们将synchronized的基本规则总结为下面3条,并通过实例对它们进行说明。
第一条:
当一个线程访问“某对象”的“synchronized方法”或者“synchronized代码块”时,其他线程对“该对象”的该“synchronized方法”或者“synchronized代码块”的访问将被阻塞。
第二条:
当一个线程访问“某对象”的“synchronized方法”或者“synchronized代码块”时,其他线程仍然可以访问“该对象”的非同步代码块。
第三条:
当一个线程访问“某对象”的“synchronized方法”或者“synchronized代码块”时,其他线程对“该对象”的其他的“synchronized方法”或者“synchronized代码块”的访问将被阻塞。
第一条
当一个线程访问“某对象”的“synchronized方法”或者“synchronized代码块”时,其他线程对“该对象”的该“synchronized方法”或者“synchronized代码块”的访问将被阻塞。
下面是“synchronized代码块”对应的演示程序。
1 class MyRunable implements Runnable { 2 3 @Override 4 public void run() { 5 synchronized(this) { 6 try { 7 for (int i = 0; i < 5; i++) { 8 Thread.sleep(100); // 休眠100ms 9 System.out.println(Thread.currentThread().getName() + " loop " + i); 10 } 11 } catch (InterruptedException ie) { 12 } 13 } 14 } 15 } 16 17 public class Demo1_1 { 18 19 public static void main(String[] args) { 20 Runnable demo = new MyRunable(); // 新建“Runnable对象” 21 22 Thread t1 = new Thread(demo, "t1"); // 新建“线程t1”, t1是基于demo这个Runnable对象 23 Thread t2 = new Thread(demo, "t2"); // 新建“线程t2”, t2是基于demo这个Runnable对象 24 t1.start(); // 启动“线程t1” 25 t2.start(); // 启动“线程t2” 26 } 27 }
运行结果:
t1 loop 0 t1 loop 1 t1 loop 2 t1 loop 3 t1 loop 4 t2 loop 0 t2 loop 1 t2 loop 2 t2 loop 3 t2 loop 4
结果说明:
run()方法中存在“synchronized(this)代码块”,而且t1和t2都是基于"demo这个Runnable对象"创建的线程。这就意味着,我们可以将synchronized(this)中的this看作是“demo这个Runnable对象”;因此,线程t1和t2共享“demo对象的同步锁”。所以,当一个线程运行的时候,另外一个线程必须等待“运行线程”释放“demo的同步锁”之后才能运行。
如果你确认,你搞清楚这个问题了。那我们将上面的代码进行修改,然后再运行看看结果怎么样,看看你是否会迷糊。修改后的源码如下:
1 class MyThread extends Thread { 2 3 public MyThread(String name) { 4 super(name); 5 } 6 7 @Override 8 public void run() { 9 synchronized(this) { 10 try { 11 for (int i = 0; i < 5; i++) { 12 Thread.sleep(100); // 休眠100ms 13 System.out.println(Thread.currentThread().getName() + " loop " + i); 14 } 15 } catch (InterruptedException ie) { 16 } 17 } 18 } 19 } 20 21 public class Demo1_2 { 22 23 public static void main(String[] args) { 24 Thread t1 = new MyThread("t1"); // 新建“线程t1” 25 Thread t2 = new MyThread("t2"); // 新建“线程t2” 26 t1.start(); // 启动“线程t1” 27 t2.start(); // 启动“线程t2” 28 } 29 }
代码说明:
比较Demo1_2
和
Demo1_1,我们发现,Demo1_2中的MyThread类是直接继承于Thread,而且t1和t2都是MyThread子线程。
幸运的是,在“Demo1_2的run()方法”也调用了synchronized(this),正如“Demo1_1的run()方法”也调用了synchronized(this)一样!
那么,Demo1_2的执行流程是不是和Demo1_1一样呢?
运行结果:
t1 loop 0 t2 loop 0 t1 loop 1 t2 loop 1 t1 loop 2 t2 loop 2 t1 loop 3 t2 loop 3 t1 loop 4 t2 loop 4
结果说明:
如果这个结果一点也不令你感到惊讶,那么我相信你对synchronized和this的认识已经比较深刻了。否则的话,请继续阅读这里的分析。
synchronized(this)中的this是指“当前的类对象”,即synchronized(this)所在的类对应的当前对象。它的作用是获取“当前对象的同步锁”。
对于Demo1_2中,synchronized(this)中的this代表的是MyThread对象,而t1和t2是两个不同的MyThread对象,因此t1和t2在执行synchronized(this)时,获取的是不同对象的同步锁。对于Demo1_1对而言,synchronized(this)中的this代表的是MyRunable对象;t1和t2共同一个MyRunable对象,因此,一个线程获取了对象的同步锁,会造成另外一个线程等待。
第二条
当一个线程访问“某对象”的“synchronized方法”或者“synchronized代码块”时,其他线程仍然可以访问“该对象”的非同步代码块。
下面是“synchronized代码块”对应的演示程序。
1 class Count { 2 3 // 含有synchronized同步块的方法 4 public void synMethod() { 5 synchronized(this) { 6 try { 7 for (int i = 0; i < 5; i++) { 8 Thread.sleep(100); // 休眠100ms 9 System.out.println(Thread.currentThread().getName() + " synMethod loop " + i); 10 } 11 } catch (InterruptedException ie) { 12 } 13 } 14 } 15 16 // 非同步的方法 17 public void nonSynMethod() { 18 try { 19 for (int i = 0; i < 5; i++) { 20 Thread.sleep(100); 21 System.out.println(Thread.currentThread().getName() + " nonSynMethod loop " + i); 22 } 23 } catch (InterruptedException ie) { 24 } 25 } 26 } 27 28 public class Demo2 { 29 30 public static void main(String[] args) { 31 final Count count = new Count(); 32 // 新建t1, t1会调用“count对象”的synMethod()方法 33 Thread t1 = new Thread( 34 new Runnable() { 35 @Override 36 public void run() { 37 count.synMethod(); 38 } 39 }, "t1"); 40 41 // 新建t2, t2会调用“count对象”的nonSynMethod()方法 42 Thread t2 = new Thread( 43 new Runnable() { 44 @Override 45 public void run() { 46 count.nonSynMethod(); 47 } 48 }, "t2"); 49 50 51 t1.start(); // 启动t1 52 t2.start(); // 启动t2 53 } 54 }
运行结果:
t1 synMethod loop 0 t2 nonSynMethod loop 0 t1 synMethod loop 1 t2 nonSynMethod loop 1 t1 synMethod loop 2 t2 nonSynMethod loop 2 t1 synMethod loop 3 t2 nonSynMethod loop 3 t1 synMethod loop 4 t2 nonSynMethod loop 4
结果说明:
主线程中新建了两个子线程t1和t2。t1会调用count对象的synMethod()方法,该方法内含有同步块;而t2则会调用count对象的nonSynMethod()方法,该方法不是同步方法。t1运行时,虽然调用synchronized(this)获取“count的同步锁”;但是并没有造成t2的阻塞,因为t2没有用到“count”同步锁。
第三条
当一个线程访问“某对象”的“synchronized方法”或者“synchronized代码块”时,其他线程对“该对象”的其他的“synchronized方法”或者“synchronized代码块”的访问将被阻塞。
我们将上面的例子中的nonSynMethod()方法体的也用synchronized(this)修饰。修改后的源码如下:
1 class Count { 2 3 // 含有synchronized同步块的方法 4 public void synMethod() { 5 synchronized(this) { 6 try { 7 for (int i = 0; i < 5; i++) { 8 Thread.sleep(100); // 休眠100ms 9 System.out.println(Thread.currentThread().getName() + " synMethod loop " + i); 10 } 11 } catch (InterruptedException ie) { 12 } 13 } 14 } 15 16 // 也包含synchronized同步块的方法 17 public void nonSynMethod() { 18 synchronized(this) { 19 try { 20 for (int i = 0; i < 5; i++) { 21 Thread.sleep(100); 22 System.out.println(Thread.currentThread().getName() + " nonSynMethod loop " + i); 23 } 24 } catch (InterruptedException ie) { 25 } 26 } 27 } 28 } 29 30 public class Demo3 { 31 32 public static void main(String[] args) { 33 final Count count = new Count(); 34 // 新建t1, t1会调用“count对象”的synMethod()方法 35 Thread t1 = new Thread( 36 new Runnable() { 37 @Override 38 public void run() { 39 count.synMethod(); 40 } 41 }, "t1"); 42 43 // 新建t2, t2会调用“count对象”的nonSynMethod()方法 44 Thread t2 = new Thread( 45 new Runnable() { 46 @Override 47 public void run() { 48 count.nonSynMethod(); 49 } 50 }, "t2"); 51 52 53 t1.start(); // 启动t1 54 t2.start(); // 启动t2 55 } 56 }
运行结果:
t1 synMethod loop 0 t1 synMethod loop 1 t1 synMethod loop 2 t1 synMethod loop 3 t1 synMethod loop 4 t2 nonSynMethod loop 0 t2 nonSynMethod loop 1 t2 nonSynMethod loop 2 t2 nonSynMethod loop 3 t2 nonSynMethod loop 4
结果说明:
主线程中新建了两个子线程t1和t2。t1和t2运行时都调用synchronized(this),这个this是Count对象(count),而t1和t2共用count。因此,在t1运行时,t2会被阻塞,等待t1运行释放“count对象的同步锁”,t2才能运行。
3. synchronized方法 和 synchronized代码块
“synchronized方法”是用synchronized修饰方法,而 “synchronized代码块”则是用synchronized修饰代码块。
synchronized方法示例
public synchronized void foo1() { System.out.println("synchronized methoed"); }
synchronized代码块
public void foo2() { synchronized (this) { System.out.println("synchronized methoed"); } }
synchronized代码块中的this是指当前对象。也可以将this替换成其他对象,例如将this替换成obj,则foo2()在执行synchronized(obj)时就获取的是obj的同步锁。
synchronized代码块可以更精确的控制冲突限制访问区域,有时候表现更高效率。下面通过一个示例来演示:
1 // Demo4.java的源码 2 public class Demo4 { 3 4 public synchronized void synMethod() { 5 for(int i=0; i<1000000; i++) 6 ; 7 } 8 9 public void synBlock() { 10 synchronized( this ) { 11 for(int i=0; i<1000000; i++) 12 ; 13 } 14 } 15 16 public static void main(String[] args) { 17 Demo4 demo = new Demo4(); 18 19 long start, diff; 20 start = System.currentTimeMillis(); // 获取当前时间(millis) 21 demo.synMethod(); // 调用“synchronized方法” 22 diff = System.currentTimeMillis() - start; // 获取“时间差值” 23 System.out.println("synMethod() : "+ diff); 24 25 start = System.currentTimeMillis(); // 获取当前时间(millis) 26 demo.synBlock(); // 调用“synchronized方法块” 27 diff = System.currentTimeMillis() - start; // 获取“时间差值” 28 System.out.println("synBlock() : "+ diff); 29 } 30 }
(某一次)执行结果:
synMethod() : 11
synBlock() : 3
4. 实例锁 和 全局锁
实例锁 --
锁在某一个实例对象上。如果该类是单例,那么该锁也具有全局锁的概念。
实例锁对应的就是synchronized关键字。
全局锁 --
该锁针对的是类,无论实例多少个对象,那么线程都共享该锁。
全局锁对应的就是static
synchronized(或者是锁在该类的class或者classloader对象上)。
关于“实例锁”和“全局锁”有一个很形象的例子:
pulbic class Something { public synchronized void isSyncA(){} public synchronized void isSyncB(){} public static synchronized void cSyncA(){} public static synchronized void cSyncB(){} }
假设,Something有两个实例x和y。分析下面4组表达式获取的锁的情况。
(01) x.isSyncA()与x.isSyncB()
(02) x.isSyncA()与y.isSyncA()
(03) x.cSyncA()与y.cSyncB()
(04) x.isSyncA()与Something.cSyncA()
(01) 不能被同时访问。因为isSyncA()和isSyncB()都是访问同一个对象(对象x)的同步锁!
1 // LockTest1.java的源码 2 class Something { 3 public synchronized void isSyncA(){ 4 try { 5 for (int i = 0; i < 5; i++) { 6 Thread.sleep(100); // 休眠100ms 7 System.out.println(Thread.currentThread().getName()+" : isSyncA"); 8 } 9 }catch (InterruptedException ie) { 10 } 11 } 12 public synchronized void isSyncB(){ 13 try { 14 for (int i = 0; i < 5; i++) { 15 Thread.sleep(100); // 休眠100ms 16 System.out.println(Thread.currentThread().getName()+" : isSyncB"); 17 } 18 }catch (InterruptedException ie) { 19 } 20 } 21 } 22 23 public class LockTest1 { 24 25 Something x = new Something(); 26 Something y = new Something(); 27 28 // 比较(01) x.isSyncA()与x.isSyncB() 29 private void test1() { 30 // 新建t11, t11会调用 x.isSyncA() 31 Thread t11 = new Thread( 32 new Runnable() { 33 @Override 34 public void run() { 35 x.isSyncA(); 36 } 37 }, "t11"); 38 39 // 新建t12, t12会调用 x.isSyncB() 40 Thread t12 = new Thread( 41 new Runnable() { 42 @Override 43 public void run() { 44 x.isSyncB(); 45 } 46 }, "t12"); 47 48 49 t11.start(); // 启动t11 50 t12.start(); // 启动t12 51 } 52 53 public static void main(String[] args) { 54 LockTest1 demo = new LockTest1(); 55 demo.test1(); 56 } 57 }
运行结果:
t11 : isSyncA
t11 : isSyncA
t11 : isSyncA
t11 : isSyncA
t11 : isSyncA
t12 : isSyncB
t12 : isSyncB
t12 : isSyncB
t12 : isSyncB
t12 : isSyncB
(02) 可以同时被访问。因为访问的不是同一个对象的同步锁,x.isSyncA()访问的是x的同步锁,而y.isSyncA()访问的是y的同步锁。
1 // LockTest2.java的源码 2 class Something { 3 public synchronized void isSyncA(){ 4 try { 5 for (int i = 0; i < 5; i++) { 6 Thread.sleep(100); // 休眠100ms 7 System.out.println(Thread.currentThread().getName()+" : isSyncA"); 8 } 9 }catch (InterruptedException ie) { 10 } 11 } 12 public synchronized void isSyncB(){ 13 try { 14 for (int i = 0; i < 5; i++) { 15 Thread.sleep(100); // 休眠100ms 16 System.out.println(Thread.currentThread().getName()+" : isSyncB"); 17 } 18 }catch (InterruptedException ie) { 19 } 20 } 21 public static synchronized void cSyncA(){ 22 try { 23 for (int i = 0; i < 5; i++) { 24 Thread.sleep(100); // 休眠100ms 25 System.out.println(Thread.currentThread().getName()+" : cSyncA"); 26 } 27 }catch (InterruptedException ie) { 28 } 29 } 30 public static synchronized void cSyncB(){ 31 try { 32 for (int i = 0; i < 5; i++) { 33 Thread.sleep(100); // 休眠100ms 34 System.out.println(Thread.currentThread().getName()+" : cSyncB"); 35 } 36 }catch (InterruptedException ie) { 37 } 38 } 39 } 40 41 public class LockTest2 { 42 43 Something x = new Something(); 44 Something y = new Something(); 45 46 // 比较(02) x.isSyncA()与y.isSyncA() 47 private void test2() { 48 // 新建t21, t21会调用 x.isSyncA() 49 Thread t21 = new Thread( 50 new Runnable() { 51 @Override 52 public void run() { 53 x.isSyncA(); 54 } 55 }, "t21"); 56 57 // 新建t22, t22会调用 x.isSyncB() 58 Thread t22 = new Thread( 59 new Runnable() { 60 @Override 61 public void run() { 62 y.isSyncA(); 63 } 64 }, "t22"); 65 66 67 t21.start(); // 启动t21 68 t22.start(); // 启动t22 69 } 70 71 public static void main(String[] args) { 72 LockTest2 demo = new LockTest2(); 73 74 demo.test2(); 75 } 76 }
运行结果:
t21 : isSyncA
t22 : isSyncA
t21 : isSyncA
t22 : isSyncA
t21 : isSyncA
t22 : isSyncA
t21 : isSyncA
t22 : isSyncA
t21 : isSyncA
t22 : isSyncA
(03) 不能被同时访问。因为cSyncA()和cSyncB()都是static类型,x.cSyncA()相当于Something.isSyncA(),y.cSyncB()相当于Something.isSyncB(),因此它们共用一个同步锁,不能被同时反问。
1 // LockTest3.java的源码 2 class Something { 3 public synchronized void isSyncA(){ 4 try { 5 for (int i = 0; i < 5; i++) { 6 Thread.sleep(100); // 休眠100ms 7 System.out.println(Thread.currentThread().getName()+" : isSyncA"); 8 } 9 }catch (InterruptedException ie) { 10 } 11 } 12 public synchronized void isSyncB(){ 13 try { 14 for (int i = 0; i < 5; i++) { 15 Thread.sleep(100); // 休眠100ms 16 System.out.println(Thread.currentThread().getName()+" : isSyncB"); 17 } 18 }catch (InterruptedException ie) { 19 } 20 } 21 public static synchronized void cSyncA(){ 22 try { 23 for (int i = 0; i < 5; i++) { 24 Thread.sleep(100); // 休眠100ms 25 System.out.println(Thread.currentThread().getName()+" : cSyncA"); 26 } 27 }catch (InterruptedException ie) { 28 } 29 } 30 public static synchronized void cSyncB(){ 31 try { 32 for (int i = 0; i < 5; i++) { 33 Thread.sleep(100); // 休眠100ms 34 System.out.println(Thread.currentThread().getName()+" : cSyncB"); 35 } 36 }catch (InterruptedException ie) { 37 } 38 } 39 } 40 41 public class LockTest3 { 42 43 Something x = new Something(); 44 Something y = new Something(); 45 46 // 比较(03) x.cSyncA()与y.cSyncB() 47 private void test3() { 48 // 新建t31, t31会调用 x.isSyncA() 49 Thread t31 = new Thread( 50 new Runnable() { 51 @Override 52 public void run() { 53 x.cSyncA(); 54 } 55 }, "t31"); 56 57 // 新建t32, t32会调用 x.isSyncB() 58 Thread t32 = new Thread( 59 new Runnable() { 60 @Override 61 public void run() { 62 y.cSyncB(); 63 } 64 }, "t32"); 65 66 67 t31.start(); // 启动t31 68 t32.start(); // 启动t32 69 } 70 71 public static void main(String[] args) { 72 LockTest3 demo = new LockTest3(); 73 74 demo.test3(); 75 } 76 }
运行结果:
t31 : cSyncA
t31 : cSyncA
t31 : cSyncA
t31 : cSyncA
t31 : cSyncA
t32 : cSyncB
t32 : cSyncB
t32 : cSyncB
t32 : cSyncB
t32 : cSyncB
(04) 可以被同时访问。因为isSyncA()是实例方法,x.isSyncA()使用的是对象x的锁;而cSyncA()是静态方法,Something.cSyncA()可以理解对使用的是“类的锁”。因此,它们是可以被同时访问的。
1 // LockTest4.java的源码 2 class Something { 3 public synchronized void isSyncA(){ 4 try { 5 for (int i = 0; i < 5; i++) { 6 Thread.sleep(100); // 休眠100ms 7 System.out.println(Thread.currentThread().getName()+" : isSyncA"); 8 } 9 }catch (InterruptedException ie) { 10 } 11 } 12 public synchronized void isSyncB(){ 13 try { 14 for (int i = 0; i < 5; i++) { 15 Thread.sleep(100); // 休眠100ms 16 System.out.println(Thread.currentThread().getName()+" : isSyncB"); 17 } 18 }catch (InterruptedException ie) { 19 } 20 } 21 public static synchronized void cSyncA(){ 22 try { 23 for (int i = 0; i < 5; i++) { 24 Thread.sleep(100); // 休眠100ms 25 System.out.println(Thread.currentThread().getName()+" : cSyncA"); 26 } 27 }catch (InterruptedException ie) { 28 } 29 } 30 public static synchronized void cSyncB(){ 31 try { 32 for (int i = 0; i < 5; i++) { 33 Thread.sleep(100); // 休眠100ms 34 System.out.println(Thread.currentThread().getName()+" : cSyncB"); 35 } 36 }catch (InterruptedException ie) { 37 } 38 } 39 } 40 41 public class LockTest4 { 42 43 Something x = new Something(); 44 Something y = new Something(); 45 46 // 比较(04) x.isSyncA()与Something.cSyncA() 47 private void test4() { 48 // 新建t41, t41会调用 x.isSyncA() 49 Thread t41 = new Thread( 50 new Runnable() { 51 @Override 52 public void run() { 53 x.isSyncA(); 54 } 55 }, "t41"); 56 57 // 新建t42, t42会调用 x.isSyncB() 58 Thread t42 = new Thread( 59 new Runnable() { 60 @Override 61 public void run() { 62 Something.cSyncA(); 63 } 64 }, "t42"); 65 66 67 t41.start(); // 启动t41 68 t42.start(); // 启动t42 69 } 70 71 public static void main(String[] args) { 72 LockTest4 demo = new LockTest4(); 73 74 demo.test4(); 75 } 76 }
运行结果:
t41 : isSyncA
t42 : cSyncA
t41 : isSyncA
t42 : cSyncA
t41 : isSyncA
t42 : cSyncA
t41 : isSyncA
t42 : cSyncA
t41 : isSyncA
t42 : cSyncA
更多内容
3. Java多线程系列--“基础篇”02之 常用的实现多线程的两种方式