分治 fft + 多项式 ln 即可,时间复杂度 \(\mathcal O(n \log^2 n)\)
#include <cstdio>
#include <vector>
#include <cstring>
#include <iostream>
using namespace std;
const int MAXN = 8e6 , Mod = 998244353;
int Add( int x , int y ) { x += y; return x >= Mod ? x - Mod : x; }
int Sub( int x , int y ) { x -= y; return x < 0 ? x + Mod : x; }
int Mul( int x , int y ) { return 1ll * x * y % Mod; }
int Quick_pow( int x , int po ) { int Ans = 1; for( ; po ; po >>= 1 , x = Mul( x , x ) ) if( po & 1 ) Ans = Mul( Ans , x ); return Ans; }
int Inv( int x ) { return Quick_pow( x , Mod - 2 ); }
int iv[ MAXN + 5 ];
void Init() {
iv[ 1 ] = 1;
for( int i = 2 ; i <= MAXN ; i ++ ) iv[ i ] = Mul( Mod - Mod / i , iv[ Mod % i ] );
}
#define Poly vector< int >
#define len( x ) ( (int)x.size() )
Poly operator - ( int x , Poly f ) { for( int i = 0 ; i < len( f ) ; i ++ ) f[ i ] = Mod - f[ i ]; f[ 0 ] = Add( f[ 0 ] , x ); return f; }
Poly operator - ( Poly f , int x ) { f[ 0 ] = Sub( f[ 0 ] , x ); return f; }
Poly operator * ( Poly f , int x ) { for( int i = 0 ; i < len( f ) ; i ++ ) f[ i ] = Mul( f[ i ] , x ); return f; }
Poly operator + ( Poly f , Poly g ) {
int n = max( len( f ) , len( g ) ); f.resize( n ); g.resize( n );
for( int i = 0 ; i < n ; i ++ ) f[ i ] = Add( f[ i ] , g[ i ] );
return f;
}
Poly operator - ( Poly f , Poly g ) {
int n = max( len( f ) , len( g ) ); f.resize( n ); g.resize( n );
for( int i = 0 ; i < n ; i ++ ) f[ i ] = Sub( f[ i ] , g[ i ] );
return f;
}
const int G = 3 , IG = 332748118;
int lim , ilim , rev[ MAXN + 5 ];
void ntt( Poly &f , int op ) {
for( int i = 0 ; i < lim ; i ++ ) if( i < rev[ i ] ) swap( f[ i ] , f[ rev[ i ] ] );
for( int len = 2 , w ; len <= lim ; len <<= 1 ) {
w = Quick_pow( op == 1 ? G : IG , ( Mod - 1 ) / len );
for( int l = 0 ; l < lim ; l += len ) {
for( int i = l , wk = 1 ; i < l + len / 2 ; i ++ , wk = Mul( wk , w ) ) {
int t = Mul( wk , f[ i + len / 2 ] );
f[ i + len / 2 ] = Sub( f[ i ] , t ); f[ i ] = Add( f[ i ] , t );
}
}
}
if( op == -1 ) for( int i = 0 ; i < lim ; i ++ ) f[ i ] = Mul( f[ i ] , ilim );
}
int mxlen = 100000000;
Poly operator * ( Poly f , Poly g ) {
int n = len( f ) + len( g ) - 1; for( lim = 1 ; lim < n ; lim <<= 1 ); ilim = Inv( lim );
for( int i = 0 ; i < lim ; i ++ ) rev[ i ] = ( rev[ i >> 1 ] >> 1 ) | ( i & 1 ? lim >> 1 : 0 );
f.resize( lim ); g.resize( lim );
ntt( f , 1 ); ntt( g , 1 );
for( int i = 0 ; i < lim ; i ++ ) f[ i ] = Mul( f[ i ] , g[ i ] );
ntt( f , -1 ); f.resize( min( n , mxlen ) );
return f;
}
Poly Inv( Poly f ) {
Poly g = Poly( 1 , Inv( f[ 0 ] ) );
for( mxlen = 2 ; mxlen < 2 * len( f ) ; mxlen <<= 1 ) {
Poly A = f; A.resize( mxlen );
g = g * ( 2 - ( g * A ) );
}
g.resize( len( f ) ); return g;
}
Poly Der( Poly f ) {
for( int i = 0 ; i < len( f ) - 1 ; i ++ ) f[ i ] = Mul( i + 1 , f[ i + 1 ] );
f.resize( len( f ) - 1 );
return f;
}
Poly Int( Poly f ) {
f.resize( len( f ) + 1 );
for( int i = len( f ) - 1 ; i >= 1 ; i -- ) f[ i ] = Mul( f[ i - 1 ] , iv[ i ] );
f[ 0 ] = 0;
return f;
}
Poly Ln( Poly f ) {
Poly g = Int( Der( f ) * Inv( f ) );
g.resize( len( f ) ); return g;
}
Poly Exp( Poly f ) {
Poly g = Poly( 1 , 1 );
for( mxlen = 2 ; mxlen < 4 * len( f ) ; mxlen <<= 1 ) {
Poly A = f; A.resize( mxlen );
g = g * ( ( 1 - Ln( g ) ) + A );
}
g.resize( len( f ) ); return g;
}
Poly Pow( Poly f , int k ) {
f = Ln( f ); f = f * k; f = Exp( f );
return f;
}
Poly Sqrt( Poly f ) {
Poly g = Poly( 1 , 1 );
for( mxlen = 2 ; mxlen < 4 * len( f ) ; mxlen <<= 1 ) {
Poly A = f; A.resize( mxlen );
g = ( g + ( A * Inv( g ) ) ) * Inv( 2 );
}
g.resize( len( f ) ); return g;
}
int T , n; Poly f[ MAXN + 5 ] , g;
Poly cdq_ntt( int l , int r ) {
if( l == r ) return f[ l ];
return cdq_ntt( l , ( l + r ) / 2 ) * cdq_ntt( ( l + r ) / 2 + 1 , r );
}
signed main( ) {
Init();
scanf("%d",&T);
while( T -- ) {
scanf("%d",&n);
for( int i = 1 , a ; i <= n ; i ++ ) {
scanf("%d",&a); f[ i ].resize( 2 );
f[ i ][ 0 ] = 1 , f[ i ][ 1 ] = Mod - a;
}
g = Der( Ln( cdq_ntt( 1 , n ) ) );
g.resize( len( g ) + 1 );
for( int i = len( g ) - 1 ; i >= 1 ; i -- ) g[ i ] = g[ i - 1 ]; g[ 0 ] = 0;
g = n - g;
int Xor = 0;
for( int i = 1 ; i <= n ; i ++ ) Xor ^= g[ i ];
printf("%d\n", Xor );
}
return 0;
}