一。Eclipse安装
1.下载解压
下载:http://www.eclipse.org/downloads/
解压:SHELL$ sudo tar -zxvf eclipse.tar.gz
2.快捷方式
右键Ubuntu桌面,创建启动器
3.创建一个JavaProject
4.添加必须jar
全部jar都可以在%Hadoop安装目录%/share/hadoop目录中找到。
二。基本操作
这里仅限FileSystem中的方法,其数量繁多,具体查看API。
1.遍历目录和文件 listStatus
package hadooptest; import org.apache.hadoop.yarn.api.records.URL; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileStatus; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.junit.Test; public class HdfsTest { private static FileSystem hdfs; @Test public void test() throws Exception { // 1.创建配置器 Configuration conf = new Configuration(); conf.set("fs.default.name", "hdfs://192.168.1.240:9000"); conf.set("mapred.jop.tracker", "192.168.1.240:9001"); // 2.创建文件系统 hdfs = FileSystem.get(conf); // 3.遍历HDFS上的文件和目录 FileStatus[] fs = hdfs.listStatus(new Path("hdfs:/")); if (fs.length > 0) { for (FileStatus f : fs) { showDir(f); } } } private static void showDir(FileStatus fs) throws Exception { Path path = fs.getPath(); System.out.println(path); // 如果是目录 //if (fs.isDir()) { //已过期 if (fs.isDirectory()) { FileStatus[] f = hdfs.listStatus(path); if (f.length > 0) { for (FileStatus file : f) { showDir(file); } } } } }
2.遍历文件 listFiles
@Test public void test() throws Exception { // 1.配置器 Configuration conf = new Configuration(); conf.set("fs.default.name", "hdfs://192.168.1.240:9000"); conf.set("mapred.jop.tracker", "192.168.1.240:9001"); // 2.文件系统 hdfs = FileSystem.get(conf); // 3.遍历HDFS上的文件 RemoteIterator<LocatedFileStatus> fs = hdfs.listFiles(new Path("hdfs:/"), true); while(fs.hasNext()){ System.out.println(fs.next()); } }
3.判断存在 exists
@Test public void test() throws Exception { // 1.创建配置器 Configuration conf = new Configuration(); conf.set("fs.default.name", "hdfs://192.168.1.240:9000"); conf.set("mapred.jop.tracker", "192.168.1.240:9001"); //2.创建文件系统 FileSystem hdfs = FileSystem.get(conf); //3.创建可供hadoop使用的文件系统路径 Path file = new Path("hdfs:/test.txt"); // 4.判断文件是否存在(文件目标路径) System.out.println("文件存在:" + hdfs.exists(file)); }
4.判断目录/文件 isDirectory/isFile
package hadooptest; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileStatus; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.junit.Test; public class HdfsTest { private static FileSystem hdfs; @Test public void test() throws Exception { // 1.配置器 Configuration conf = new Configuration(); conf.set("fs.default.name", "hdfs://192.168.1.240:9000"); conf.set("mapred.jop.tracker", "192.168.1.240:9001"); // 2.文件系统 hdfs = FileSystem.get(conf); // 3.遍历HDFS上目前拥有的文件和目录 FileStatus[] fs = hdfs.listStatus(new Path("hdfs:/")); if (fs.length > 0) { for (FileStatus f : fs) { showDir(f); } } else{ System.out.println("没什么好遍历的..."); } } private static void showDir(FileStatus fs) throws Exception { Path path = fs.getPath(); // 如果是目录 if (fs.isDirectory()) { System.out.println("目录:" + path); FileStatus[] f = hdfs.listStatus(path); if (f.length > 0) { for (FileStatus file : f) { showDir(file); } } } else { System.out.println("文件:" + path); } } }
5.最后修改时间 getModificationTime
package hadooptest; import java.util.Date; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileStatus; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.junit.Test; public class HdfsTest2 { private static FileSystem hdfs; @Test public void test() throws Exception { // 1.创建配置器 Configuration conf = new Configuration(); conf.set("fs.default.name", "hdfs://192.168.1.240:9000"); conf.set("mapred.jop.tracker", "192.168.1.240:9001"); // 2.创建文件系统(指定为HDFS文件系统到URI) hdfs = FileSystem.get(conf); // 3.列出HDFS上目前拥有的文件和目录 FileStatus[] fs = hdfs.listStatus(new Path("hdfs:/")); if(fs.length>0){ for (FileStatus f : fs) { showDir(f); } } } private static void showDir(FileStatus fs) throws Exception { Path path = fs.getPath(); //获取最后修改时间 long time = fs.getModificationTime(); System.out.println("HDFS文件的最后修改时间:"+new Date(time)); System.out.println(path); if (fs.isDirectory()) { FileStatus[] f = hdfs.listStatus(path); if(f.length>0){ for (FileStatus file : f) { showDir(file); } } } } }
6.文件备份状态 getFileBlockLocations
package hadooptest; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.BlockLocation; import org.apache.hadoop.fs.FileStatus; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.junit.Test; public class HdfsTest2 { @Test public void test() throws Exception { //1.配置器 Configuration conf = new Configuration(); conf.set("fs.default.name", "hdfs://192.168.1.240:9000"); conf.set("mapred.jop.tracker", "192.168.1.240:9001"); //2.文件系统 FileSystem fs = FileSystem.get(conf); //3.已存在的,必须是文件 Path path = new Path("hdfs:/vigiles/dir/test3.txt"); //4.文件状态 FileStatus status = fs.getFileStatus(path); //5.文件块 //BlockLocation[] blockLocations = fs.getFileBlockLocations(status, 0, status.getLen()); //方法1,传入文件的FileStatus BlockLocation[] blockLocations = fs.getFileBlockLocations(path, 0, status.getLen()); //方法2,传入文件的Path int blockLen = blockLocations.length; System.err.println("块数量:"+blockLen); //如果文件不够大,就不会分块,即得到1 for (int i = 0; i < blockLen; i++) { //得到块文件大小 long sizes = blockLocations[i].getLength(); System.err.println("块大小:"+sizes); //按照备份数量得到全部主机名 String[] hosts = blockLocations[i].getHosts(); for (String host : hosts) { System.err.println("主机名:"+host); } //按照备份数量得到全部主机名 String[] names = blockLocations[i].getNames(); for (String name : names) { System.err.println("IP:"+ name); } } } }
7.读取文件 open
package hadooptest; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataInputStream; import org.apache.hadoop.fs.FileStatus; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.junit.Test; public class HdfsTest2 { @Test public void test() throws Exception { Configuration conf = new Configuration(); conf.set("fs.default.name", "hdfs://192.168.1.240:9000"); conf.set("mapred.jop.tracker", "192.168.1.240:9001"); FileSystem fs = FileSystem.get(conf); Path path = new Path("hdfs:/vigiles/dir/test3.txt"); FSDataInputStream is = fs.open(path); FileStatus stat = fs.getFileStatus(path); byte[] buffer = new byte[Integer.parseInt(String.valueOf(stat.getLen()))]; is.readFully(0, buffer); is.close(); fs.close(); System.out.println(new String(buffer)); } }
8.复制上传文件 copyFromLocalFile
@Test public void test() throws Exception { // 1.创建配置器 Configuration conf = new Configuration(); conf.set("fs.default.name", "hdfs://192.168.1.240:9000"); conf.set("mapred.jop.tracker", "192.168.1.240:9001"); //2.创建文件系统 FileSystem hdfs = FileSystem.get(conf); //3.创建可供hadoop使用的文件系统路径 Path src = new Path("file:/home/hadoop/桌面/copy_test.txt"); //本地目录/文件 Path dst = new Path("hdfs:/"); //目标目录/文件 // 4.拷贝本地文件上传(本地文件,目标路径) hdfs.copyFromLocalFile(src, dst); System.out.println("文件上传成功至:" + conf.get("fs.default.name")); // 5.列出HDFS上的文件 FileStatus[] fs = hdfs.listStatus(dst); for (FileStatus f : fs) { System.out.println(f.getPath()); } Path path = new Path("hdfs:/copy_test.txt"); FSDataInputStream is = hdfs.open(path); FileStatus stat = hdfs.getFileStatus(path); byte[] buffer = new byte[Integer.parseInt(String.valueOf(stat.getLen()))]; is.readFully(0, buffer); is.close(); hdfs.close(); System.out.println("文件内容:" + new String(buffer)); }
另:移动上传moveFromLocalFile,和copyFromLocalFile类似,但其操作后源文件将不存在。
9.复制下载文件 copyToLocalFile
@Test public void test() throws Exception { Configuration conf = new Configuration(); conf.set("fs.default.name", "hdfs://192.168.1.240:9000"); conf.set("mapred.jop.tracker", "192.168.1.240:9001"); FileSystem hdfs = FileSystem.get(conf); //创建HDFS源路径和本地目标路径 Path src = new Path("hdfs:/copy_test.txt"); //目标目录/文件 Path dst = new Path("file:/home/hadoop/桌面/new.txt"); //本地目录/文件 //拷贝本地文件上传(本地文件,目标路径) hdfs.copyToLocalFile(src, dst); }
另:moveToLocalFile,其操作后源文件将不存在。
10.创建目录 mkdirs
@Test public void test() throws Exception { Configuration conf = new Configuration(); conf.set("fs.default.name", "hdfs://192.168.1.240:9000"); conf.set("mapred.jop.tracker", "192.168.1.240:9001"); FileSystem hdfs = FileSystem.get(conf); //创建目录 hdfs.mkdirs(new Path("hdfs:/eminem")); }
11.创建目录/文件 create
@Test public void test() throws Exception { Configuration conf = new Configuration(); conf.set("fs.default.name", "hdfs://192.168.1.240:9000"); conf.set("mapred.jop.tracker", "192.168.1.240:9001"); FileSystem hdfs = FileSystem.get(conf); // 使用HDFS数据输出流(写)对象 在HDSF上根目录创建一个文件夹,其内再创建文件 FSDataOutputStream out = hdfs.create(new Path("hdfs:/vigiles/eminem.txt")); // 在文件中写入一行数据,必须使用UTF-8 out.write("痞子阿姆,Hello !".getBytes("UTF-8")); out = hdfs.create(new Path("/vigiles/alizee.txt")); out.write("艾莉婕,Hello !".getBytes("UTF-8")); out.close(); FSDataInputStream is = hdfs.open(new Path("hdfs:/vigiles/alizee.txt")); FileStatus stat = hdfs.getFileStatus(new Path("hdfs:/vigiles/alizee.txt")); byte[] buffer = new byte[Integer.parseInt(String.valueOf(stat.getLen()))]; is.readFully(0, buffer); is.close(); hdfs.close(); System.out.println(new String(buffer)); }
12.创建空文件 createNewFile
@Test public void test() throws Exception { Configuration conf = new Configuration(); conf.set("fs.default.name", "hdfs://192.168.1.240:9000"); conf.set("mapred.jop.tracker", "192.168.1.240:9001"); FileSystem hdfs = FileSystem.get(conf); //创建空文件 hdfs.createNewFile(new Path("hdfs:/newfile.txt")); }
13.写入文件 append
@Test public void test() throws Exception { Configuration conf = new Configuration(); conf.set("fs.default.name", "hdfs://192.168.1.240:9000"); conf.set("mapred.jop.tracker", "192.168.1.240:9001"); FileSystem hdfs = FileSystem.get(conf); //创建空文件 FSDataOutputStream out = hdfs.append(new Path("hdfs:/newfile.txt")); out.write("使用append方法写入文件\n".getBytes("UTF-8")); out.close(); out = hdfs.append(new Path("/newfile.txt")); out.write("再次写入!!!\n".getBytes("UTF-8")); out.close(); }
14.重命名文件 rename
@Test public void test() throws Exception { Configuration conf = new Configuration(); conf.set("fs.default.name", "hdfs://192.168.1.240:9000"); conf.set("mapred.jop.tracker", "192.168.1.240:9001"); FileSystem fs = FileSystem.get(conf); //重命名:fs.rename(源文件,新文件) boolean rename = fs.rename(new Path("/copy_test.txt"), new Path("/copy.txt")); System.out.println(rename); }
15.删除文件 delete
@Test public void test() throws Exception { Configuration conf = new Configuration(); conf.set("fs.default.name", "hdfs://192.168.1.240:9000"); conf.set("mapred.jop.tracker", "192.168.1.240:9001"); FileSystem fs = FileSystem.get(conf); //判断删除(路径,true。false=非空时不删除,抛RemoteException、IOException异常) boolean delete = fs.delete(new Path("hdfs:/test.txt"), true); System.out.println("执行删除:"+delete); //FileSystem关闭时执行 boolean exit = fs.deleteOnExit(new Path("/out.txt")); System.out.println("执行删除:"+exit); fs.close(); }
三。MapReduce常用算法
1.计数
1)数据准备
2)代码
1 package hadooptest; 2 3 import java.io.IOException; 4 import java.util.StringTokenizer; 5 import org.apache.hadoop.conf.Configuration; 6 import org.apache.hadoop.fs.Path; 7 import org.apache.hadoop.io.IntWritable; 8 import org.apache.hadoop.io.Text; 9 import org.apache.hadoop.mapreduce.Job; 10 import org.apache.hadoop.mapreduce.Mapper; 11 import org.apache.hadoop.mapreduce.Reducer; 12 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 13 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 14 15 /* 16 * 单词计数 17 */ 18 public class WordCount { 19 20 /* 21 * 先经过mapper运算,然后才是reducer。 22 * 内部类:映射器 Mapper<Key_IN, Value_IN, Key_OUT, Value_OUT> 23 */ 24 public static class MyMapper extends Mapper<Object, Text, Text, IntWritable> { 25 26 //计数,查到一个就占个坑 27 private static final IntWritable one = new IntWritable(1); 28 //文本 29 private Text word = new Text(); 30 31 /** 32 * 重写map方法,实现理想效果 33 * MyMapper的实例只有一个,但实例的这个map方法却一直在执行 34 * Key1:文本行号。Value1:指定行的文本。context:上下文对象 35 * 这里K1、V1像这样[K,V] 36 **/ 37 public void map(Object Key1, Text Value1, Mapper<Object, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException { 38 //拆分字符串,返回单词集合。默认以空格拆分 39 StringTokenizer itr = new StringTokenizer(Value1.toString()); 40 //遍历一行的全部单词 41 while (itr.hasMoreTokens()) { 42 //将文本转为临时Text变量 43 this.word.set(itr.nextToken()); 44 //将单词保存到上下文对象中(单词,占坑),输出 45 context.write(this.word, one); 46 } 47 } 48 } 49 50 /************************************************************************ 51 * 在Mapper后,Reducer前,有个shuffle过程,会根据k2将对应的v2归并为v2[...] * 52 *************************************************************************/ 53 54 /* 55 * mapper结束后,执行现在的reducer。 56 * 内部类:拆分器 Reducer<Key_IN, Value_IN, Key_OUT, Value_OUT> 57 */ 58 public static class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable> { 59 60 //个数统计 61 private IntWritable result = new IntWritable(); 62 63 /** 64 * 重写reduce方法,实现理想效果 65 * MyReducer的实例也只有一个,但实例的这个reduce方法却一直在执行 66 * Key2:单词。Values2:value的集合,也就是[1,1,1,...]。context:上下文对象 67 * 这里这里K2、V2像这样[K,V[1,1,1,...]] 68 **/ 69 public void reduce(Text Key2, Iterable<IntWritable> Values2, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException { 70 int sum = 0; 71 //累加V2的元素,有多少个 1 ,即有多少个指定单词 72 for (IntWritable val : Values2) { 73 sum += val.get(); 74 } 75 this.result.set(sum); 76 //终于将单词和总个数再次输出 77 context.write(Key2, this.result); 78 } 79 } 80 81 public static void main(String[] args) throws Exception { 82 // 声明配置信息 83 Configuration conf = new Configuration(); 84 conf.set("fs.default.name", "hdfs://192.168.1.240:9000"); 85 // 创建作业 86 Job job = new Job(conf, "word count"); 87 job.setJarByClass(WordCount.class); 88 // 设置mr 89 job.setMapperClass(MyMapper.class); 90 job.setReducerClass(MyReducer.class); 91 // 设置输出类型,和Context上下文对象write的参数类型一致 92 job.setOutputKeyClass(Text.class); 93 job.setOutputValueClass(IntWritable.class); 94 // 设置输入输出路径 95 FileInputFormat.addInputPath(job, new Path("hdfs:/input")); //文件已经存在 96 FileOutputFormat.setOutputPath(job, new Path("hdfs:/output")); //尚未存在 97 // 执行 98 System.exit(job.waitForCompletion(true) ? 0 : 1); 99 } 100 }
3)结果
2.排序
1)数据准备
2)代码
1 package hadooptest; 2 3 import * 4 5 //hadoop默认排序: 6 //如果k2、v2类型是Text-文本,结果是按照字典顺序 7 //如果k2、v2类型是LongWritable-数字,结果是按照数字大小顺序 8 9 public class TestSort { 10 /** 11 * 内部类:映射器 Mapper<KEY_IN, VALUE_IN, KEY_OUT, VALUE_OUT> 12 */ 13 public static class MyMapper extends Mapper<LongWritable, Text, LongWritable, NullWritable> { 14 /** 15 * 重写map方法 16 */ 17 public void map(LongWritable k1, Text v1, Context context) throws IOException, InterruptedException { 18 //这里v1转为k2-数字类型,舍弃k1。null为v2 19 context.write(new LongWritable(Long.parseLong(v1.toString())), NullWritable.get()); 20 //因为v1可能重复,这时,k2也是可能有重复的 21 } 22 } 23 24 /*** 在此方法执行前,有个shuffle过程,会根据k2将对应的v2归并为v2[...] ***/ 25 26 /** 27 * 内部类:拆分器 Reducer<KEY_IN, VALUE_IN, KEY_OUT, VALUE_OUT> 28 */ 29 public static class MyReducer extends Reducer<LongWritable, NullWritable, LongWritable, NullWritable> { 30 /** 31 * 重写reduce方法 32 */ 33 protected void reduce(LongWritable k2, Iterable<NullWritable> v2, Context context) throws IOException, InterruptedException { 34 //k2=>k3, v2[...]舍弃。null => v3 35 context.write(k2, NullWritable.get()); 36 //此时,k3如果发生重复,根据默认算法会发生覆盖,即最终仅保存一个k3 37 } 38 } 39 40 public static void main(String[] args) throws Exception { 41 // 声明配置信息 42 Configuration conf = new Configuration(); 43 conf.set("fs.default.name", "hdfs://192.168.1.240:9000"); 44 45 // 创建作业 46 Job job = new Job(conf, "Test Sort"); 47 job.setJarByClass(TestSort.class); 48 49 // 设置mr 50 job.setMapperClass(MyMapper.class); 51 job.setReducerClass(MyReducer.class); 52 53 // 设置输出类型,和Context上下文对象write的参数类型一致 54 job.setOutputKeyClass(LongWritable.class); 55 job.setOutputValueClass(NullWritable.class); 56 57 // 设置输入输出路径 58 FileInputFormat.setInputPaths(job, new Path("/input/")); 59 FileOutputFormat.setOutputPath(job, new Path("/out")); 60 61 // 执行 62 System.exit(job.waitForCompletion(true) ? 0 : 1); 63 } 64 }
3)结果
3.去重
1 /* 2 * 内部类:映射器 Mapper<KEY_IN, VALUE_IN, KEY_OUT, VALUE_OUT> 3 */ 4 public static class MyMapper extends Mapper<LongWritable, Text, LongWritable, NullWritable> { 5 /**** 6 * 重写map方法 7 ****/ 8 public void map(LongWritable k1, Text v1, Context context) throws IOException, InterruptedException { 9 //因为我们读入的数据就是一行一个数字,直接使用 10 //这个数字有几个都无所谓,只有知道有这么一个数字即可,所以输出的v2为null 11 context.write(new LongWritable(Long.parseLong(v1.toString())), NullWritable.get()); 12 } 13 } 14 15 /** 在此方法执行前,有个shuffle过程,会根据k2将对应的v2归并为v2[...] **/ 16 17 /* 18 * 内部类:拆分器 Reducer<KEY_IN, VALUE_IN, KEY_OUT, VALUE_OUT> 19 */ 20 public static class MyReducer extends Reducer<LongWritable, NullWritable, LongWritable, NullWritable> { 21 /**** 22 * 重写reduce方法 23 ****/ 24 protected void reduce(LongWritable k2, Iterable<NullWritable> v2, Context context) throws IOException, InterruptedException { 25 //此时,k3(即眼前的k2)如果发生重复,根据默认算法会发生覆盖,即最终仅保存一个k3,达到去重到效果,而v3是null无所谓 26 context.write(k2, NullWritable.get()); 27 28 } 29 }
4.过滤
1 /* 2 * 内部类:映射器 Mapper<KEY_IN, VALUE_IN, KEY_OUT, VALUE_OUT> 3 */ 4 public static class MyMapper extends Mapper<LongWritable, Text, Text, NullWritable> { 5 String tmp = "8238"; 6 7 /** 8 * 重写map方法。k1:行首字符索引,v1:这一行文本 9 **/ 10 protected void map(LongWritable k1, Text v1, Mapper<LongWritable, Text, Text, NullWritable>.Context context) throws IOException ,InterruptedException { 11 System.out.println(v1+", "+tmp); 12 //如果行文本是指定值,过滤之 13 if(v1.toString().equals(tmp)){ 14 System.out.println("有了"); 15 //保存(按照泛型限制,k2是Text,v2是Nullritable) 16 context.write(v1, NullWritable.get()); 17 } 18 } 19 } 20 21 /* 22 * 内部类:拆分器 Reducer<KEY_IN, VALUE_IN, KEY_OUT, VALUE_OUT> 23 */ 24 public static class MyReducer extends Reducer<Text, NullWritable, Text, NullWritable> { 25 /** 26 * 重写reduce方法 27 **/ 28 protected void reduce(Text k2, Iterable<NullWritable> v2, Reducer<Text, NullWritable, Text, NullWritable>.Context context) throws IOException ,InterruptedException { 29 context.write(k2, NullWritable.get()); 30 } 31 }
如果报错:
Error: java.io.IOException: Type
mismatch in key from map: expected org.apache.hadoop.io.LongWritable, received
org.apache.hadoop.io.Text
一定要检查main方法里:
// 设置输出类型,和Context上下文对象write的参数类型一致 job.setOutputKeyClass(Text.class); job.setOutputValueClass(NullWritable.class);
5.TopN
1)数值最大
1 // map(泛型定义了输入和输出类型) 2 public static class MyMapper extends Mapper<LongWritable, Text, LongWritable, NullWritable> { 3 4 // 首先创建一个临时变量,保存一个可存储的最小值:Long.MIN_VALUE=-9223372036854775808 5 long temp = Long.MIN_VALUE; 6 7 // 找出最大值。这个map不断迭代v1,最终保存最大值 8 protected void map(LongWritable k1, Text v1, Context context) throws IOException, InterruptedException { 9 10 // 将文本转数值 11 long val = Long.parseLong(v1.toString()); 12 // 如果v1比临时变量大,则保存v1的值 13 if (temp < val) { 14 temp = val; 15 } 16 } 17 18 /** ---此方法在全部的map任务结束后执行一次。这时仅输出临时变量到最大值--- **/ 19 protected void cleanup(Context context) throws IOException, InterruptedException { 20 context.write(new LongWritable(temp), NullWritable.get()); 21 System.out.println("文件读取完毕,保存最大值"); //输出两次,对应两个文本文件 22 } 23 } 24 25 // reduce 26 public static class MyReducer extends Reducer<LongWritable, NullWritable, LongWritable, NullWritable> { 27 // 临时变量 28 Long temp = Long.MIN_VALUE; 29 30 // 因为一个文件得到一个最大值,我们有两个txt文件会得到两个值。再次将这些值比对,得到最大的 31 protected void reduce(LongWritable k2, Iterable<NullWritable> v2, Context context) throws IOException, InterruptedException { 32 33 long val = Long.parseLong(k2.toString()); 34 // 如果k2比临时变量大,则保存k2的值 35 if (temp < val) { 36 temp = val; 37 } 38 } 39 40 /** !!!此方法在全部的reduce任务结束后执行一次。这时仅输出唯一最大值!!! **/ 41 protected void cleanup(Context context) throws IOException, InterruptedException { 42 context.write(new LongWritable(temp), NullWritable.get()); 43 } 44 }
2)数值前5大
1 // map 2 public static class MyMapper extends Mapper<LongWritable, Text, LongWritable, NullWritable> { 3 4 // 首先创建一个临时变量,保存一个可存储的最小值:Long.MIN_VALUE=-9223372036854775808 5 long temp = Long.MIN_VALUE; 6 // Top5存储空间,我们取前5个 7 long[] tops; 8 9 /** 这个方法在run中调用,在全部map之前执行一次 **/ 10 protected void setup(Context context) { 11 // 初始化数组长度为5 12 tops = new long[5]; 13 } 14 15 // 找出最大值 16 protected void map(LongWritable k1, Text v1, Context context) throws IOException, InterruptedException { 17 18 // 将文本转数值 19 final long val = Long.parseLong(v1.toString()); 20 // 保存在0索引 21 tops[0] = val; 22 // 排序后最大值在最后一个索引,这样从[5]到[0]依次减小。每执行一次map,最小的[0]都会赋予新值 23 Arrays.sort(tops); 24 } 25 26 /** ---此方法在全部到map任务结束后执行一次。输出map后得到的前5个最大值--- **/ 27 protected void cleanup(Context context) throws IOException, InterruptedException { 28 for (int i = 0; i < tops.length; i++) { 29 context.write(new LongWritable(tops[i]), NullWritable.get()); 30 } 31 } 32 } 33 34 // reduce 35 public static class MyReducer extends Reducer<LongWritable, NullWritable, LongWritable, NullWritable> { 36 Long temp = Long.MIN_VALUE; 37 long[] tops; 38 39 /** 次方法在run中调用,在全部map之前执行一次 **/ 40 protected void setup(Context context) { 41 tops = new long[5]; 42 } 43 44 // 因为每个文件都得到5个值,再次将这些值比对,得到最大的 45 protected void reduce(LongWritable k2, Iterable<NullWritable> v2, Context context) throws IOException, InterruptedException { 46 long top = Long.parseLong(k2.toString()); 47 tops[0] = top; 48 Arrays.sort(tops); 49 } 50 51 /** ---此方法在全部到reduce任务结束后执行一次--- **/ 52 protected void cleanup(Context context) throws IOException, InterruptedException { 53 for (int i = 0; i < tops.length; i++) { 54 context.write(new LongWritable(tops[i]), NullWritable.get()); 55 } 56 } 57 }
3)数量最大
public static class MyMapper extends Mapper<Object, Text, Text, IntWritable> { private static final IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object Key1, Text Value1, Mapper<Object, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException { String[] strings = Value1.toString().split(" "); for (String str : strings) { this.word.set(str); context.write(this.word, one); } } } public static class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable> { //临时变量,保存最大数量的单词 private String keyer; //注意这里不能用Hadoop的类型,如Text private IntWritable valer; //这里最好也是基本的java数据类型,如int //计数 private Integer temp = Integer.MIN_VALUE; public void reduce(Text Key2, Iterable<IntWritable> Values2, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException { int sum = 0; //统计数量 for (IntWritable val : Values2) { sum += val.get(); } //保存最大数量值 if (sum > temp) { temp = sum; keyer = Key2.toString(); valer = new IntWritable(temp); } } //最终输出最大数量的单词 protected void cleanup(Context context) throws IOException, InterruptedException { context.write(new Text(keyer), valer); } }
6.单表关联
/* 父 子 子 孙 1 2 2 3 A B B C */ // map public static class MyMapper extends Mapper<LongWritable, Text, Text, Text> { // 拆分原始数据 protected void map(LongWritable k1, Text v1, Context context) throws IOException, InterruptedException { // 按制表符拆分记录。一行拆出两个角色 String[] splits = v1.toString().split(" "); //针对无意义的换行过滤 if (splits.length > 1) { // 把“父”作为k2;“子“加下划线区分,作为v2 context.write(new Text(splits[0]), new Text("_" + splits[1])); // 把“子”作为k2;“父”辈作为v2。就是把原两个单词调换位置保存 context.write(new Text(splits[1]), new Text(splits[0])); } } /** * 父 _子 * 子 父 * * 子 _孙 * 孙 子 **/ } /** * k2 v2[...] * 子 [父,_孙] **/ // reduce public static class MyReducer extends Reducer<Text, Text, Text, Text> { // 拆分k2v2[...]数据 protected void reduce(Text k2, Iterable<Text> v2, Context context) throws IOException, InterruptedException { String grandson = ""; // “孙” String grandfather = ""; // “父” // 从迭代中遍历v2[...] for (Text man : v2) { String p = man.toString(); System.out.println("得到:" + p); // 如果单词是以下划线开始的 if (p.startsWith("_")) { grandson = p.substring(1); } // 如果单词没有下划线起始 else { // 直接赋值给孙辈变量 grandfather = p; } } // 在得到有效数据的情况下 if (grandson != "" && grandfather != "") { // 写出得到的结果。 context.write(new Text(grandson), new Text(grandfather)); } /** * k3=父,v3=孙 **/ } }
7.双表关联
// map public static class MyMapper extends Mapper<LongWritable, Text, Text, Text> { // 拆分原始数据 protected void map(LongWritable k1, Text v1, Context context) throws IOException, InterruptedException { // 拆分记录 String[] splited = v1.toString().split(" "); // 如果第一列是数字(使用正则判断),就是歌曲表。先读入那个文件由hadoop决定 if (splited[0].matches("^[-+]?(([0-9]+)([.]([0-9]+))?|([.]([0-9]+))?)$")) { String id = splited[0]; String song = splited[1]; //v2加两条下划线作为前缀标识为歌曲 context.write(new Text(id), new Text("__" + song)); } // 否则就是歌手表 else { String singer = splited[0]; String id = splited[1]; //v2-加两条横线作为前缀标识为歌手 context.write(new Text(id), new Text("--" + singer)); } /** * 1 __Eminem 1 --LoseYourself **/ } } // reduce public static class MyReducer extends Reducer<Text, Text, Text, Text> { // 拆分k2v2[...]数据 protected void reduce(Text k2, Iterable<Text> v2, Context context) throws IOException, InterruptedException { String song = ""; // 歌曲 String singer = ""; // 歌手 /** * 1, [__Eminem, --LoseYourself] **/ for (Text text : v2) { String tmp = text.toString(); if (tmp.startsWith("__")) { // 如果是__开头的是song song = tmp.substring(2); // 从索引2开始截取字符串 } if (tmp.startsWith("--")) { // 如果是--开头的是歌手 singer = tmp.substring(2); } } context.write(new Text(singer), new Text(song)); } /** * k3=Eminem,v3=LoseYourself * Eminem LoseYourself Alizee LaIslaBonita Michael YouAreNotAlone Manson FuckFrankie * **/ }
- end