Given a non-empty array of numbers, a0, a1, a2, … , an-1, where 0 ≤ ai < 231.
Find the maximum result of ai XOR aj, where 0 ≤ i, j < n.
Could you do this in O(n) runtime?
Example:
Input: [3, 10, 5, 25, 2, 8] Output: 28 Explanation: The maximum result is 5 ^ 25 = 28.
这道题是一道典型的位操作Bit Manipulation的题目,我开始以为异或值最大的两个数一定包括数组的最大值,但是OJ给了另一个例子{10,23,20,18,28},这个数组的异或最大值是10和20异或,得到30。那么只能另辟蹊径,正确的做法是按位遍历,题目中给定了数字的返回不会超过231,那么最多只能有32位,我们用一个从左往右的mask,用来提取数字的前缀,然后将其都存入set中,我们用一个变量t,用来验证当前位为1再或上之前结果res,看结果和set中的前缀异或之后在不在set中,这里用到了一个性质,若a^b=c,那么a=b^c,因为t是我们要验证的当前最大值,所以我们遍历set中的数时,和t异或后的结果仍在set中,说明两个前缀可以异或出t的值,所以我们更新res为t,继续遍历,如果上述讲解不容易理解,那么建议自己带个例子一步一步试试,并把每次循环中set中所有的数字都打印出来,基本应该就能理解了,参见代码如下:
class Solution { public: int findMaximumXOR(vector<int>& nums) { int res = 0, mask = 0; for (int i = 31; i >= 0; --i) { mask |= (1 << i); set<int> s; for (int num : nums) { s.insert(num & mask); } int t = res | (1 << i); for (int prefix : s) { if (s.count(t ^ prefix)) { res = t; break; } } } return res; } };
本文转自博客园Grandyang的博客,原文链接:数组中异或值最大的两个数字[LeetCode] Maximum XOR of Two Numbers in an Array ,如需转载请自行联系原博主。