题目
题意: 在大小为0-m的一维数轴上,给定n个柱子xi,每个点均有其限速ai.即在x[i]到x[i+1]一段速度为ai.现在可以删除至多 k个柱子,求从0到m的最短时间。(0处必有柱子,且不能删除)
思路: n = 500.猜测是一个n^3的算法,dp.
dp[i][j]表示前i个柱子,删除j个,且不删除第i个的最小花费.
dp2[i][j]表示前i个柱子,删除j个,且删除第i个的最小花费.
此处的最小花费是前从0到i+1的最小花费,不然不好写,绕了半天才看懂.
dp2[i][j] = min(dp2[i-1][j-1],dp[i-1][j-1]) + a[i] * (x[i+1] - x[i])
dp[i][j] = min(dp[i][j],dp2[t][i-t] + a[t] * (a[x+1]-x[i-t+1]) *), 1 <= t <= j
时间复杂度: O(n^3)
代码:
// Problem: C. Road Optimization
// Contest: Codeforces - Codeforces Round #765 (Div. 2)
// URL: https://codeforces.com/contest/1625/problem/C
// Memory Limit: 128 MB
// Time Limit: 3000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<complex>
#include<cstring>
#include<cmath>
#include<vector>
#include<map>
#include<unordered_map>
#include<list>
#include<set>
#include<queue>
#include<stack>
#define OldTomato ios::sync_with_stdio(false),cin.tie(nullptr),cout.tie(nullptr)
#define fir(i,a,b) for(int i=a;i<=b;++i)
#define mem(a,x) memset(a,x,sizeof(a))
#define p_ priority_queue
// round() 四舍五入 ceil() 向上取整 floor() 向下取整
// lower_bound(a.begin(),a.end(),tmp,greater<ll>()) 第一个小于等于的
// #define int long long //QAQ
using namespace std;
typedef complex<double> CP;
typedef pair<int,int> PII;
typedef long long ll;
// typedef __int128 it;
const double pi = acos(-1.0);
const int INF = 0x3f3f3f3f;
const ll inf = 1e18;
const int N = 502;
const int M = 1e6+10;
const int mod = 1e9+7;
const double eps = 1e-6;
inline int lowbit(int x){ return x&(-x);}
template<typename T>void write(T x)
{
if(x<0)
{
putchar('-');
x=-x;
}
if(x>9)
{
write(x/10);
}
putchar(x%10+'0');
}
template<typename T> void read(T &x)
{
x = 0;char ch = getchar();ll f = 1;
while(!isdigit(ch)){if(ch == '-')f*=-1;ch=getchar();}
while(isdigit(ch)){x = x*10+ch-48;ch=getchar();}x*=f;
}
int n,m,k,T;
int x[N];
int a[N];
int dp[N][N]; //不删除第i个
int dp2[N][N]; //删除第i个
void solve()
{
mem(dp,0x3f);
mem(dp2,0x3f);
int ans = 0x3f3f3f3f;
cin>>n>>m>>k;
for(int i=1;i<=n;++i) cin>>x[i];
for(int i=1;i<=n;++i) cin>>a[i];
x[n+1] = m;
if(n == 1)
{
ans = (m - x[1]) * a[1];
cout<<ans; return ;
}
dp[1][0] = dp2[1][0] = (x[2]-x[1]) * (a[1]);
for(int i=2;i<=n;++i)
{
for(int j=0;j<=min(i-1,k);++j) //删除多少个
{
//不删第i个
dp[i][j] = min(dp2[i-1][j],dp[i-1][j]) + (x[i+1] - x[i]) * a[i];
// if(i == 2 && j == 0) cout<<x[i+1]<<" "<<a[i]<<endl;
for(int t=1;t<=j;++t) //删第i个,枚举从哪个转移
{
// int de = i - t;
dp2[i][j] = min(dp2[i][j],dp[i-t][j-t] + a[i-t] * (x[i+1]-x[i-t+1]));
}
// cout<<i<<" "<<j<<":"<<dp2[i][j]<<endl;
}
}
for(int j=0;j<=k;++j) ans = min({ans,dp[n][j],dp2[n][j]});
cout<<ans;
}
signed main(void)
{
T = 1;
// OldTomato; cin>>T;
// read(T);
while(T--)
{
solve();
}
return 0;
}