Python3入门机器学习 - 梯度下降法

梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。

模拟实现梯度下降法


def DJ(theta):      //计算损失函数J的斜率
    return 2*(theta-2.5)
def J(theta):        //损失函数J,使用梯度下降法 求该函数极小值
    return (theta-2.5)**2+1
theta = 0.0
eta = 0.1
epsilon = 1e-8
theta_history = [theta]

while True:
    gradient = DJ(theta)
    last_theta = theta
    theta = theta - eta*gradient
    theta_history.append(theta)
    if(abs(J(theta) - J(last_theta))<epsilon):
        break

pyplot.plot(plot_x,plot_y)
pyplot.plot(np.array(theta_history),J(np.array(theta_history)),color='r',marker='+')
Python3入门机器学习 - 梯度下降法
梯度下降法应用于线性回归算法
    def fit_gd(self,X_train,y_train,eta=0.01,n_iters=1e6):
        def J(theta,X_b,y):
            try:
                return np.sum((y-X_b.dot(theta))**2)/len(y)
            except:
                return float("inf")
        def dJ(theta,X_b,y):
            # res = np.empty()
            # res[0] = np.sum(X_b.dot(theta)-y)
            # for i in range(1,len(theta)):
            #     res[i] = (X_b.dot(theta)-y).dot(X_b[:,i])
            # return res * 2 / len(X_b)
            return X_b.T.dot(X_b.dot(theta)-y)*2./len(X_b)
        def gradient_descent(X_b,y,initial_theta,eta,n_iters=1e6,epsilon=1e-8):
            theta = initial_theta
            cur_iter = 0
            while cur_iter<n_iters:
                gradient = dJ(theta,X_b,y)
                last_theta = theta
                theta = theta - eta * gradient
                if (abs(J(theta,X_b,y) - J(last_theta,X_b,y)) < epsilon):
                    break
                cur_iter+=1
            return theta
        X_b = np.hstack([np.ones((len(X_train),1)),X_train])
        initial_theta = np.zeros(X_b.shape[1])
        self._theta = gradient_descent(X_b,y_train,initial_theta,eta,n_iters)
        self.interception_ = self._theta[0]
        self.coef_ = self._theta[1:]
        return self


随机梯度下降法


随机梯度下降法是在矩阵X_b中任选一行进行梯度下降,基于这种思想,每次下降具有很大的随机性,甚至损失函数有可能变大,但根据经验,发现这种方法也可以较好的计算出最佳的损失函数值。

Python3入门机器学习 - 梯度下降法
随机梯度下降法的超参数(模拟退火)

由于随机梯度下降法的不确定性,因此eta值需要根据每次递归的过程递减,图示即为常用的eta值递减方案。

def dJ_sgd(theta,X_b_i,y_i):
    return X_b_i.T.dot(X_b_i.dot(theta)-y_i)*2.

def sgd(X_b,y, initial_theta,n_iters):
    t0 = 5.0
    t1 = 50.0
    
    def learning_theta(t):
        return t0/(t1+t)
    
    theta = initial_theta
    for cur_iter in range(n_iters):
        rand_i = np.random.randint(len(X_b))
        gradient = dJ_sgd(theta,X_b[rand_i],y[rand_i])
        theta = theta-learning_theta(cur_iter) * gradient
    return theta
使用sklearn中的随机梯度下降法
from sklearn.linear_model import SGDRegressor

sgd = SGDRegressor(n_iter=1000)
sgd.fit(X_train_standard,y_train)
sgd.score(X_test_standard,y_test)


梯度下降法的DEBUG


一般来说,梯度下降法需要对损失函数进行数学推导出他的导函数,但我们如何得知推导过程是否正确,或者说导函数是否正确呢,我们可以使用以下方法进行验证

def dJ_debug(theta,X_b,y,epslion=0.01):
    res = np.empty(len(theta))
    for i in range(len(theta)):
        theta_1 = theta.copy()
        theta_1[i] += epslion
        theta_2 = theta.copy()
        theta_2[i] -= epslion
        res[i] = (J(theta_1,X_b,y)-J(theta_2,X_b,y)/(2*epslion))
    return res
Python3入门机器学习 - 梯度下降法
使用两个蓝点的斜率来替代红点的斜率,验证斜率是否正确
上一篇:Python3入门机器学习 - 线性回归与knn算法处理boston数据集


下一篇:Python3入门机器学习 - 混淆矩阵、精准率、召回率