Normalizing Flows (NFs)- 理解

Normalizing Flows (NFs)是一个生成模型系列,具有可操作的分布,其采样和密度评估都是有效和精确的。

被探索的大部分Flows是三角流triangular flows(coupling耦合或autoregressive自回归架构),Residual networks和Neural ODEs也正在积极研究和应用。

NORMALIZING FLOWS

Coupling and Autoregressive Layers
Affine Coupling
Monotone Functions
Autoregressive Flows
Probability Density Distillation
Convolutional
Residual Flows
Matrix Determinant Lemma
Lipschitz Constrained
Surjective and Stochastic Layers
Discrete Flows
Continuous Time Flows
Regularising Trajectories

NFs研究方向

Inductive biases (归纳性偏置)
role of the base measure (基准测量的作用)
Form of diffeomorphisms (微分同胚的形式)

loss function

Generalisation to non-Euclidean spaces(非欧几里得空间的泛化)

flows on manifolds

discrete distributions (离散分布)

去量化dequantization,(即在离散数据中加入噪声,使其成为连续数据)

上一篇:181. 超过经理收入的员工


下一篇:[LeetCode] #181 超过经理收入的员工