一、加权有向图
package 图;
public class DirectedEdge {
private int v;//顶点
private int w;//顶点
private double weight;//权重
public DirectedEdge(int v, int w, double weight) {
this.v = v;
this.w = w;
this.weight = weight;
}
//起点
public int from() {
return v;
}
//终点
public int to() {
return w;
}
public double getWeight() {
return weight;
}
@Override
public String toString() {
return String.format("%d-%d %.2f",v,w,weight);
}
}
package 图;
import java.util.LinkedList;
import java.util.Queue;
public class EdgeWeightedDigraph {
private int V;//顶点数
private int E;//边
private Queue<DirectedEdge>[] adj;//邻接表
public EdgeWeightedDigraph(int v) {
V = v;
E=0;
adj=new Queue[v];
for (Queue<DirectedEdge> queue : adj) {
queue=new LinkedList<>();
}
}
public void addEdge(DirectedEdge edge){
int v=edge.from();
int w=edge.to();
adj[v].offer(edge);
E++;
}
public Queue<DirectedEdge> adj(int v) {
return adj[v];
}
public Queue<DirectedEdge> edges(){
Queue<DirectedEdge> queue=new LinkedList<>();
for (Queue<DirectedEdge> edges : adj) {
for (DirectedEdge edge : edges) {
queue.add(edge);
}
}
return queue;
}
public int getV() {
return V;
}
public int getE() {
return E;
}
}
二、最短路径问题
- 最短路径问题:找到一个顶点到达另一个顶点的成本最小的路径
- 性质: 路径有向;权重不一定等于距离;并不是所有顶点可达;负权重问题;存在多条最短路径;可能存在平行边和自环
- 最短路径树:树的每条路径都是最短路径
- 松弛技术:放松边v-w意味着检查从s到w的最路路径是否是先从s-v,在v-w,如果是,则更新数据结构,即disTo[v]+e.weight()>disTo[w],则这条边可以忽略,否则更新edgeTo[w]和disTo[w]
private void relax(EdgeWeightedDigraph digraph,int v){
for (DirectedEdge edge : digraph.adj(v)) {
int w= edge.to();
if(disTo[w]>disTo[v]+edge.getWeight()){
disTo[w]=disTo[v]+edge.getWeight();
edgeTo[w]=edge;
}
}
}
三、Dijkstra 算法
- 能够解决边权重非负的加权有向图的单起点最短路径问题
package 图;
public class DijkstraSP {
private DirectedEdge[] edges;//记录经过该顶点的上一条边
private double[] distTo;//记录经过该顶点的距离
private IndexMinPQ<Double> pq;//索引优先队列,,将索引和权重的优先级关联起来,可以删除并返回权重最小的索引(顶点)
public DijkstraSP(EdgeWeightedDigraph digraph,int s) {
edges=new DirectedEdge[digraph.getV()];
distTo=new double[digraph.getV()];
pq=new IndexMinPQ<>(digraph.getV());
for (int i = 0; i < distTo.length; i++) {
distTo[i]=Double.POSITIVE_INFINITY;
}
distTo[0]=0.0;
pq.insert(s,0.0);
while (!pq.isEmpty()){
int v=pq.delMin();
relax(digraph,v);
}
}
private void relax(EdgeWeightedDigraph digraph, int v) {
for (DirectedEdge edge : digraph.adj(v)) {
int w=edge.to();
if(distTo[w]>distTo[v]+edge.getWeight()){
distTo[w]=distTo[v]+edge.getWeight();
edges[w]=edge;
if(pq.contains(w)){
pq.change(w,distTo[w]);
}else {
pq.insert(w,distTo[w]);
}
}
}
}
}