VGG_19 train_vali.prototxt file

name: "VGG_ILSVRC_19_layer"

layer {
  name: "data"
  type: "ImageData"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
 
  image_data_param {
    batch_size: 12
    source: "../../fine_tuning_data/HAT_fineTuning_data/train_data_fineTuning.txt"
    root_folder: "../../fine_tuning_data/HAT_fineTuning_data/train_data/"
  }
}

layer {
  name: "data"
  type: "ImageData"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  transform_param {
    mirror: false
  }
  image_data_param {
    batch_size: 10
    source: "../../fine_tuning_data/HAT_fineTuning_data/test_data_fineTuning.txt"
    root_folder: "../../fine_tuning_data/HAT_fineTuning_data/test_data/"
  }
}

layer {
  bottom:"data"
  top:"conv1_1"
  name:"conv1_1"
  type:"Convolution"
  convolution_param {
    num_output:64
    pad:1
    kernel_size:3
  }
}
layer {
  bottom:"conv1_1"
  top:"conv1_1"
  name:"relu1_1"
  type:"ReLU"
}
layer {
  bottom:"conv1_1"
  top:"conv1_2"
  name:"conv1_2"
  type:"Convolution"
  convolution_param {
    num_output:64
    pad:1
    kernel_size:3
  }
}
layer {
  bottom:"conv1_2"
  top:"conv1_2"
  name:"relu1_2"
  type:"ReLU"
}
layer {
  bottom:"conv1_2"
  top:"pool1"
  name:"pool1"
  type:"Pooling"
  pooling_param {
    pool:MAX
    kernel_size:2
    stride:2
  }
}
layer {
  bottom:"pool1"
  top:"conv2_1"
  name:"conv2_1"
  type:"Convolution"
  convolution_param {
    num_output:128
    pad:1
    kernel_size:3
  }
}
layer {
  bottom:"conv2_1"
  top:"conv2_1"
  name:"relu2_1"
  type:"ReLU"
}
layer {
  bottom:"conv2_1"
  top:"conv2_2"
  name:"conv2_2"
  type:"Convolution"
  convolution_param {
    num_output:128
    pad:1
    kernel_size:3
  }
}
layer {
  bottom:"conv2_2"
  top:"conv2_2"
  name:"relu2_2"
  type:"ReLU"
}
layer {
  bottom:"conv2_2"
  top:"pool2"
  name:"pool2"
  type:"Pooling"
  pooling_param {
    pool:MAX
    kernel_size:2
    stride:2
  }
}
layer {
  bottom:"pool2"
  top:"conv3_1"
  name: "conv3_1"
  type:"Convolution"
  convolution_param {
    num_output:256
    pad:1
    kernel_size:3
  }
}
layer {
  bottom:"conv3_1"
  top:"conv3_1"
  name:"relu3_1"
  type:"ReLU"
}
layer {
  bottom:"conv3_1"
  top:"conv3_2"
  name:"conv3_2"
  type:"Convolution"
  convolution_param {
    num_output:256
    pad:1
    kernel_size:3
  }
}
layer {
  bottom:"conv3_2"
  top:"conv3_2"
  name:"relu3_2"
  type:"ReLU"
}
layer {
  bottom:"conv3_2"
  top:"conv3_3"
  name:"conv3_3"
  type:"Convolution"
  convolution_param {
    num_output:256
    pad:1
    kernel_size:3
  }
}
layer {
  bottom:"conv3_3"
  top:"conv3_3"
  name:"relu3_3"
  type:"ReLU"
}
layer {
  bottom:"conv3_3"
  top:"conv3_4"
  name:"conv3_4"
  type:"Convolution"
  convolution_param {
    num_output:256
    pad:1
    kernel_size:3
  }
}
layer {
  bottom:"conv3_4"
  top:"conv3_4"
  name:"relu3_4"
  type:"ReLU"
}
layer {
  bottom:"conv3_4"
  top:"pool3"
  name:"pool3"
  type:"Pooling"
  pooling_param {
    pool:MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  bottom:"pool3"
  top:"conv4_1"
  name:"conv4_1"
  type:"Convolution"
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom:"conv4_1"
  top:"conv4_1"
  name:"relu4_1"
  type:"ReLU"
}
layer {
  bottom:"conv4_1"
  top:"conv4_2"
  name:"conv4_2"
  type:"Convolution"
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom:"conv4_2"
  top:"conv4_2"
  name:"relu4_2"
  type:"ReLU"
}
layer {
  bottom:"conv4_2"
  top:"conv4_3"
  name:"conv4_3"
  type:"Convolution"
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom:"conv4_3"
  top:"conv4_3"
  name:"relu4_3"
  type:"ReLU"
}
layer {
  bottom:"conv4_3"
  top:"conv4_4"
  name:"conv4_4"
  type:"Convolution"
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom:"conv4_4"
  top:"conv4_4"
  name:"relu4_4"
  type:"ReLU"
}
layer {
  bottom:"conv4_4"
  top:"pool4"
  name:"pool4"
  type:"Pooling"
  pooling_param {
    pool:MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  bottom:"pool4"
  top:"conv5_1"
  name:"conv5_1"
  type:"Convolution"
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom:"conv5_1"
  top:"conv5_1"
  name:"relu5_1"
  type:"ReLU"
}
layer {
  bottom:"conv5_1"
  top:"conv5_2"
  name:"conv5_2"
  type:"Convolution"
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom:"conv5_2"
  top:"conv5_2"
  name:"relu5_2"
  type:"ReLU"
}
layer {
  bottom:"conv5_2"
  top:"conv5_3"
  name:"conv5_3"
  type:"Convolution"
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom:"conv5_3"
  top:"conv5_3"
  name:"relu5_3"
  type:"ReLU"
}
layer {
  bottom:"conv5_3"
  top:"conv5_4"
  name:"conv5_4"
  type:"Convolution"
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom:"conv5_4"
  top:"conv5_4"
  name:"relu5_4"
  type:"ReLU"
}
layer {
  bottom:"conv5_4"
  top:"pool5"
  name:"pool5"
  type:"Pooling"
  pooling_param {
    pool:MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  bottom:"pool5"
  top:"fc6_"
  name:"fc6_"
  type:"InnerProduct"
  inner_product_param {
    num_output: 4096
  }
}
layer {
  bottom:"fc6_"
  top:"fc6_"
  name:"relu6"
  type:"ReLU"
}
layer {
  bottom:"fc6_"
  top:"fc6_"
  name:"drop6"
  type:"Dropout"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  bottom:"fc6_"
  top:"fc7"
  name:"fc7"
  type:"InnerProduct"
  inner_product_param {
    num_output: 4096
  }
}
layer {
  bottom:"fc7"
  top:"fc7"
  name:"relu7"
  type:"ReLU"
}
layer {
  bottom:"fc7"
  top:"fc7"
  name:"drop7"
  type:"Dropout"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  bottom:"fc7"
  top:"fc8_"
  name:"fc8_"
  type:"InnerProduct"
  inner_product_param {
    num_output: 27
  }
}

layer {
  name: "sigmoid"
  type: "Sigmoid"
  bottom: "fc8_"
  top: "fc8_"
}

 layer {
   name: "accuracy"
   type: "Accuracy"
   bottom: "fc8_"
   bottom: "label"
   top: "accuracy"
   include {
     phase: TEST
   }
 }

layer {
  name: "loss"
  type: "EuclideanLoss"
  bottom: "fc8_"
  bottom: "label"
  top: "loss"
}



 

上一篇:Centos7 搭建Docker环境


下一篇:vsftpd搭建FTP服务详细步骤