在《Spark源码分析之Job提交运行总流程概述》一文中,我们提到了,Job提交与运行的第一阶段Stage划分与提交,可以分为三个阶段:
1、Job的调度模型与运行反馈;
2、Stage划分;
3、Stage提交:对应TaskSet的生成。
今天,我们就结合源码来分析下第一个小阶段:Job的调度模型与运行反馈。
首先由DAGScheduler负责将Job提交到事件队列eventProcessLoop中,等待调度执行。入口方法为DAGScheduler的runJon()方法。代码如下:
/** * Run an action job on the given RDD and pass all the results to the resultHandler function as * they arrive. * * @param rdd target RDD to run tasks on * @param func a function to run on each partition of the RDD * @param partitions set of partitions to run on; some jobs may not want to compute on all * partitions of the target RDD, e.g. for operations like first() * @param callSite where in the user program this job was called * @param resultHandler callback to pass each result to * @param properties scheduler properties to attach to this job, e.g. fair scheduler pool name * * @throws Exception when the job fails */ def runJob[T, U]( rdd: RDD[T], func: (TaskContext, Iterator[T]) => U, partitions: Seq[Int], callSite: CallSite, resultHandler: (Int, U) => Unit, properties: Properties): Unit = { // 开始时间 val start = System.nanoTime // 调用submitJob()方法,提交Job,返回JobWaiter // rdd为最后一个rdd,即target RDD to run tasks on // func为该rdd上每个分区需要执行的函数,a function to run on each partition of the RDD // partitions为该rdd上需要执行操作的分区集合,set of partitions to run on // callSite为用户程序job被调用的地方,where in the user program this job was called val waiter = submitJob(rdd, func, partitions, callSite, resultHandler, properties) // JobWaiter调用awaitResult()方法等待结果 waiter.awaitResult() match { case JobSucceeded => // Job运行成功 logInfo("Job %d finished: %s, took %f s".format (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9)) case JobFailed(exception: Exception) =>// Job运行失败 logInfo("Job %d failed: %s, took %f s".format (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9)) // SPARK-8644: Include user stack trace in exceptions coming from DAGScheduler. val callerStackTrace = Thread.currentThread().getStackTrace.tail exception.setStackTrace(exception.getStackTrace ++ callerStackTrace) throw exception } }runJob()方法就做了三件事:
首先,获取开始时间,方便最后计算Job执行时间;
其次,调用submitJob()方法,提交Job,返回JobWaiter类型的对象waiter;
最后,waiter调用JobWaiter的awaitResult()方法等待Job运行结果,这个运行结果就俩:JobSucceeded代表成功,JobFailed代表失败。
awaitResult()方法通过轮询标志位_jobFinished,如果为false,则调用this.wait()继续等待,否则说明Job运行完成,返回JobResult,其代码如下:
def awaitResult(): JobResult = synchronized { // 循环,如果标志位_jobFinished为false,则一直循环,否则退出,返回JobResult while (!_jobFinished) { this.wait() } return jobResult }而这个标志位_jobFinished是在Task运行完成后,如果已完成Task数目等于总Task数目时,或者整个Job运行失败时设置的,随着标志位的设置,Job运行结果jobResult也同步进行设置,代码如下:
// 任务运行完成 override def taskSucceeded(index: Int, result: Any): Unit = synchronized { if (_jobFinished) { throw new UnsupportedOperationException("taskSucceeded() called on a finished JobWaiter") } resultHandler(index, result.asInstanceOf[T]) finishedTasks += 1 // 已完成Task数目是否等于总Task数目 if (finishedTasks == totalTasks) { // 设置标志位_jobFinished为ture _jobFinished = true // 作业运行结果为成功 jobResult = JobSucceeded this.notifyAll() } } // 作业失败 override def jobFailed(exception: Exception): Unit = synchronized { // 设置标志位_jobFinished为ture _jobFinished = true // 作业运行结果为失败 jobResult = JobFailed(exception) this.notifyAll() }
接下来,看看submitJob()方法,代码定义如下:
/** * Submit an action job to the scheduler. * * @param rdd target RDD to run tasks on * @param func a function to run on each partition of the RDD * @param partitions set of partitions to run on; some jobs may not want to compute on all * partitions of the target RDD, e.g. for operations like first() * @param callSite where in the user program this job was called * @param resultHandler callback to pass each result to * @param properties scheduler properties to attach to this job, e.g. fair scheduler pool name * * @return a JobWaiter object that can be used to block until the job finishes executing * or can be used to cancel the job. * * @throws IllegalArgumentException when partitions ids are illegal */ def submitJob[T, U]( rdd: RDD[T], func: (TaskContext, Iterator[T]) => U, partitions: Seq[Int], callSite: CallSite, resultHandler: (Int, U) => Unit, properties: Properties): JobWaiter[U] = { // Check to make sure we are not launching a task on a partition that does not exist. // 检测rdd分区以确保我们不会在一个不存在的partition上launch一个task val maxPartitions = rdd.partitions.length partitions.find(p => p >= maxPartitions || p < 0).foreach { p => throw new IllegalArgumentException( "Attempting to access a non-existent partition: " + p + ". " + "Total number of partitions: " + maxPartitions) } // 为Job生成一个jobId,jobId为AtomicInteger类型,getAndIncrement()确保了原子操作性,每次生成后都自增 val jobId = nextJobId.getAndIncrement() // 如果partitions大小为0,即没有需要执行任务的分区,快速返回 if (partitions.size == 0) { // Return immediately if the job is running 0 tasks return new JobWaiter[U](this, jobId, 0, resultHandler) } assert(partitions.size > 0) // func转化下,否则JobSubmitted无法接受这个func参数,T转变为_ val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _] // 创建一个JobWaiter对象 val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler) // eventProcessLoop加入一个JobSubmitted事件到事件队列中 eventProcessLoop.post(JobSubmitted( jobId, rdd, func2, partitions.toArray, callSite, waiter, SerializationUtils.clone(properties))) // 返回JobWaiter waiter }submitJob()方法一共做了5件事情:
第一,数据检测,检测rdd分区以确保我们不会在一个不存在的partition上launch一个task,并且,如果partitions大小为0,即没有需要执行任务的分区,快速返回;
第二,为Job生成一个jobId,该jobId为AtomicInteger类型,getAndIncrement()确保了原子操作性,每次生成后都自增;
第三,将func转化下,否则JobSubmitted无法接受这个func参数,T转变为_;
第四,创建一个JobWaiter对象waiter,该对象会在方法结束时返回给上层方法,以用来监测Job运行结果;
第五,将一个JobSubmitted事件加入到事件队列eventProcessLoop中,等待工作线程轮询调度(速度很快)。
这里,我们有必要研究下事件队列eventProcessLoop,eventProcessLoop为DAGSchedulerEventProcessLoop类型的,在DAGScheduler初始化时被定义并赋值,代码如下:
// 创建DAGSchedulerEventProcessLoop类型的成员变量eventProcessLoop private[scheduler] val eventProcessLoop = new DAGSchedulerEventProcessLoop(this)DAGSchedulerEventProcessLoop继承自EventLoop,我们先来看看这个EventLoop的定义。
/** * An event loop to receive events from the caller and process all events in the event thread. It * will start an exclusive event thread to process all events. * EventLoop用来接收来自调用者的事件并在event thread中除了所有的事件。它将开启一个专门的事件处理线程处理所有的事件。 * * Note: The event queue will grow indefinitely. So subclasses should make sure `onReceive` can * handle events in time to avoid the potential OOM. */ private[spark] abstract class EventLoop[E](name: String) extends Logging { // LinkedBlockingDeque类型的事件队列,队列元素为E类型 private val eventQueue: BlockingQueue[E] = new LinkedBlockingDeque[E]() // 标志位 private val stopped = new AtomicBoolean(false) // 事件处理线程 private val eventThread = new Thread(name) { // 设置为后台线程 setDaemon(true) override def run(): Unit = { try { // 如果标志位stopped没有被设置为true,一直循环 while (!stopped.get) { // 从事件队列中take一条事件 val event = eventQueue.take() try { // 调用onReceive()方法进行处理 onReceive(event) } catch { case NonFatal(e) => { try { onError(e) } catch { case NonFatal(e) => logError("Unexpected error in " + name, e) } } } } } catch { case ie: InterruptedException => // exit even if eventQueue is not empty case NonFatal(e) => logError("Unexpected error in " + name, e) } } } def start(): Unit = { if (stopped.get) { throw new IllegalStateException(name + " has already been stopped") } // Call onStart before starting the event thread to make sure it happens before onReceive onStart() eventThread.start() } def stop(): Unit = { if (stopped.compareAndSet(false, true)) { eventThread.interrupt() var onStopCalled = false try { eventThread.join() // Call onStop after the event thread exits to make sure onReceive happens before onStop onStopCalled = true onStop() } catch { case ie: InterruptedException => Thread.currentThread().interrupt() if (!onStopCalled) { // ie is thrown from `eventThread.join()`. Otherwise, we should not call `onStop` since // it's already called. onStop() } } } else { // Keep quiet to allow calling `stop` multiple times. } } /** * Put the event into the event queue. The event thread will process it later. * 将事件加入到时间队列。事件线程过会会处理它。 */ def post(event: E): Unit = { // 将事件加入到待处理队列 eventQueue.put(event) } /** * Return if the event thread has already been started but not yet stopped. */ def isActive: Boolean = eventThread.isAlive /** * Invoked when `start()` is called but before the event thread starts. */ protected def onStart(): Unit = {} /** * Invoked when `stop()` is called and the event thread exits. */ protected def onStop(): Unit = {} /** * Invoked in the event thread when polling events from the event queue. * * Note: Should avoid calling blocking actions in `onReceive`, or the event thread will be blocked * and cannot process events in time. If you want to call some blocking actions, run them in * another thread. */ protected def onReceive(event: E): Unit /** * Invoked if `onReceive` throws any non fatal error. Any non fatal error thrown from `onError` * will be ignored. */ protected def onError(e: Throwable): Unit }我们可以看到,EventLoop实际上就是一个任务队列及其对该队列一系列操作的封装。在它内部,首先定义了一个LinkedBlockingDeque类型的事件队列,队列元素为E类型,其中DAGSchedulerEventProcessLoop存储的则是DAGSchedulerEvent类型的事件,代码如下:
// LinkedBlockingDeque类型的事件队列,队列元素为E类型 private val eventQueue: BlockingQueue[E] = new LinkedBlockingDeque[E]()并提供了一个后台线程,专门对事件队列里的事件进行监控,并调用onReceive()方法进行处理,代码如下:
// 事件处理线程 private val eventThread = new Thread(name) { // 设置为后台线程 setDaemon(true) override def run(): Unit = { try { // 如果标志位stopped没有被设置为true,一直循环 while (!stopped.get) { // 从事件队列中take一条事件 val event = eventQueue.take() try { // 调用onReceive()方法进行处理 onReceive(event) } catch { case NonFatal(e) => { try { onError(e) } catch { case NonFatal(e) => logError("Unexpected error in " + name, e) } } } } } catch { case ie: InterruptedException => // exit even if eventQueue is not empty case NonFatal(e) => logError("Unexpected error in " + name, e) } } }那么如何向队列中添加事件呢?调用其post()方法,传入事件即可。如下:
/** * Put the event into the event queue. The event thread will process it later. * 将事件加入到时间队列。事件线程过会会处理它。 */ def post(event: E): Unit = { // 将事件加入到待处理队列 eventQueue.put(event) }言归正传,上面提到,submitJob()方法利用eventProcessLoop的post()方法加入一个JobSubmitted事件到事件队列中,那么DAGSchedulerEventProcessLoop对于JobSubmitted事件是如何处理的呢?我们看它的onReceive()方法,源码如下:
/** * The main event loop of the DAG scheduler. * DAGScheduler中事件主循环 */ override def onReceive(event: DAGSchedulerEvent): Unit = { val timerContext = timer.time() try { // 调用doOnReceive()方法,将DAGSchedulerEvent类型的event传递进去 doOnReceive(event) } finally { timerContext.stop() } }继续看doOnReceive()方法,代码如下:
// 事件处理调度函数 private def doOnReceive(event: DAGSchedulerEvent): Unit = event match { // 如果是JobSubmitted事件,调用dagScheduler.handleJobSubmitted()方法处理 case JobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) => dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) // 如果是MapStageSubmitted事件,调用dagScheduler.handleMapStageSubmitted()方法处理 case MapStageSubmitted(jobId, dependency, callSite, listener, properties) => dagScheduler.handleMapStageSubmitted(jobId, dependency, callSite, listener, properties) case StageCancelled(stageId) => dagScheduler.handleStageCancellation(stageId) case JobCancelled(jobId) => dagScheduler.handleJobCancellation(jobId) case JobGroupCancelled(groupId) => dagScheduler.handleJobGroupCancelled(groupId) case AllJobsCancelled => dagScheduler.doCancelAllJobs() case ExecutorAdded(execId, host) => dagScheduler.handleExecutorAdded(execId, host) case ExecutorLost(execId) => dagScheduler.handleExecutorLost(execId, fetchFailed = false) case BeginEvent(task, taskInfo) => dagScheduler.handleBeginEvent(task, taskInfo) case GettingResultEvent(taskInfo) => dagScheduler.handleGetTaskResult(taskInfo) case completion @ CompletionEvent(task, reason, _, _, taskInfo, taskMetrics) => dagScheduler.handleTaskCompletion(completion) case TaskSetFailed(taskSet, reason, exception) => dagScheduler.handleTaskSetFailed(taskSet, reason, exception) case ResubmitFailedStages => dagScheduler.resubmitFailedStages() }对于JobSubmitted事件,我们通过调用DAGScheduler的handleJobSubmitted()方法来处理。
好了,到这里,第一阶段Job的调度模型与运行反馈大体已经分析完了,至于后面的第二、第三阶段,留待后续博文继续分析吧~