前言
PID控制器由比例单元 P、积分单元 I 和微分单元 D 组成,是一个在工业控制应用中常见的反馈回路部件。由两个PID控制器串联组成并分别对主副控制对象进行控制的控制器为串级控制器。传统的PID控制器在P 环节输入整定值、I环节输入整定值和D环节输入整定值分别整定后无法在控制过程中针对控制对象因各种因素引起的变化对整定值进行调整;随着神经网络理论在人工智能发展过程中不断被完善和应用,为神经网络理论能够用于新型控制器开发并作为串级控制器的组成部分提供了理论基础。
名词解释
PID控制器:由比例单元(P)、积分单元(I)和微分单元(D)组成,主要适用于基本上线性,且动态特性不随时间变化的系统。
PID串级控制器:两个控制器串联起来工作,其中主控制器的输出作为副控制器的设定值的控制器。
核心层:PID串级控制器的内层,由副控制器进行控制。
外层:PID串级控制器的外层,由主控制器进行控制。
主控制对象:PID串级控制器的外层控制对象。
副控制对象:PID串级控制器的核心层控制对象。
神经元PID控制器:采用神经网络原理开发的PID控制器,能够通过反向传播对控制器的参数进行循环自动整定。
增量式PID控制器:PID控制器的一种,其输出的是控制的增量。
P环节:PID控制器的比例单元。
I环节:PID控制器的积分单元。
D环节:PID控制器的微分单元。
反馈值:控制对象的测量值,作为控制器的反馈。
设定值:控制对象经过控制器控制所需要达到的值。
偏差:设定值与反馈值的差。
参数整定:PID控制器需要对P、I、D三个环节的值进行确定后方可投入,这个过程称为参数整定。
学习速率:控制网络的权重,并对损失梯度进行调整。
反向传播:简称BP算法,适合于神经网络的一种学习算法,建立在梯度下降法的基础上。
神经网络:模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。
单神经元:只含有一个神经元的特殊神经网络。
实验过程
在复杂工业系统中,当控制对象受到外部影响而发生扰动后,因传统PID控制器和串级控制器的参数在预先整定后无法跟随控制对象变化做出实时调整,控制器缺少应对外界环境变化的灵活性,即增加了控制过程中所需要投入的人力也不利于控制系统的高效稳定运行。
本次实验利用神经网络原理与自动控制原理实现了新型串级PID控制器开发,将神经元PID作为主控制器,能够在控制过程中通过神经网络原理的反向传播定律自动整定主控制器P、I、D三个环节的参数,在主控制对象存在因环境复杂、干扰较大而引起的自身不稳定时能够自动重新整定主控制器的P、I、D参数,使主控制器的参数能够适应控制对象的变化;副控制器采用增量式PID副控制器,确保对与主控制对象存在耦合关系的副控制对象进行增量式控制。整个串级控制器既确保了控制的及时性也能够面对因复杂工业环境而引起的控制对象不稳定变化。
本次实验中的串级控制器充分融合了神经网络原理和控制原理,考虑了不同算法原理下所设计的PID控制器的差异,根据各类控制器的特点将神经元PID控制器作为主控制器来应对外界的影响和扰动,通过神经网络反向传播定律实现参数整定自动化,确保控制系统的灵活性和对外界变化感知的灵敏性;将增量式PID控制器作为副控制器,其设定值输入来自于神经元PID控制器的输出,确保控制器动作的及时性。两种控制器在外层和核心层的串联使整个串级控制器能够应对复杂工业环境对于控制对象的不利影响。
串级控制器原理图
神经元PID控制器原理图
开源地址
本项目已经发布至pypi,如需研究或使用,可以直接访问以下链接
smartPID