大数据开发组件
HDFS
[atguigu@hadoop102 hadoop-3.1.3]$ sbin/start-dfs.sh
[atguigu@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh
http://hadoop102:9870/explorer.html#/
Yarn
[atguigu@hadoop102 hadoop-3.1.3]$ sbin/stop-yarn.sh
[atguigu@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh
Zookeeper
[atguigu@hadoop102 zookeeper-3.5.7]$ zk.sh start
HA
[atguigu@hadoop102 ~]$ stop-dfs.sh
[atguigu@hadoop102 ~]$ zk.sh start
[atguigu@hadoop102 ~]$ start-dfs.sh
[atguigu@hadoop102 ~]$ start-yarn.sh
http://hadoop102:9870/explorer.html#/
http://hadoop102:19888/jobhistory
Hive
[atguigu @hadoop102 opt]$ mysql -uroot -p
[atguigu@hadoop102 hive]$ bin/hive
hive> show tables;
[atguigu@hadoop102 hive]$ bin/hive --service hiveserver2
[atguigu@hadoop102 hive]$ bin/beeline -u jdbc:hive2://hadoop102:10000 -n atguigu
[atguigu@hadoop202 hive]$ nohup hive --service metastore 2>&1 &
[atguigu@hadoop202 hive]$ nohup hiveserver2 2>&1 &
[atguigu@hadoop102 hive]$ hiveservices.sh start
Idea连接hive数据库
Flume
[atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file conf/nc-flume-log.conf -Dflume.root.logger=INFO,console
[atguigu@hadoop102 flume]$ bin/flume-ng agent -c conf/ -n a1 -f conf/nc-flume-log.conf -Dflume.root.logger=INFO,console
[atguigu@hadoop102 ~]$ nc localhost 44444
[atguigu@hadoop102 conf]$ vim taildir-flume-hdfs.conf
添加如下内容
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = TAILDIR
a1.sources.r1.filegroups = f1 f2
# 必须精确到文件,可以写匹配表达式匹配多个文件
a1.sources.r1.filegroups.f1 = /opt/module/flume/files1/.*file.*
a1.sources.r1.filegroups.f2 = /opt/module/flume/files2/.*log.*
# 实现断点续传的文件存放位置 不改有默认位置也能实现断点续传
a1.sources.r1.positionFile = /opt/module/flume/taildir_position.json
# Describe the sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://hadoop102:8020/flume/%Y%m%d/%H
#上传文件的前缀
a1.sinks.k1.hdfs.filePrefix = log-
#是否使用本地时间戳
a1.sinks.k1.hdfs.useLocalTimeStamp = true
#积攒多少个Event才flush到HDFS一次
a1.sinks.k1.hdfs.batchSize = 100
#设置文件类型,可支持压缩
a1.sinks.k1.hdfs.fileType = DataStream
#多久生成一个新的文件
a1.sinks.k1.hdfs.rollInterval = 30
#设置每个文件的滚动大小大概是128M
a1.sinks.k1.hdfs.rollSize = 134217700
#文件的滚动与Event数量无关
a1.sinks.k1.hdfs.rollCount = 0
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
[atguigu@hadoop102 flume]$ mkdir files1
[atguigu@hadoop102 flume]$ mkdir files2
[atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file conf/taildir-flume-hdfs.conf
[atguigu@hadoop102 files1]$ echo hello >> file1.txt
[atguigu@hadoop102 files1]$ echo atguigu >> file2.txt
查看HDFS上的数据
Kafka
先启动Zookeeper集群,然后启动kafaka
[atguigu@hadoop102 kafka]$ zk.sh start
[atguigu@hadoop102 kafka]$ kf.sh start
[atguigu@hadoop102 kafka]$ bin/kafka-topics.sh --zookeeper hadoop102:2181 --list
[atguigu@hadoop102 kafka]$ bin/kafka-topics.sh --zookeeper hadoop102:2181 --create --replication-factor 3 --partitions 1 --topic first
[atguigu@hadoop102 kafka]$ bin/kafka-console-producer.sh --broker-list hadoop102:9092 --topic first
[atguigu@hadoop102 kafka]$ bin/kafka-topics.sh --zookeeper hadoop102:2181 --describe –
-topic first
[atguigu@hadoop102 kafka]$ bin/kafka-topics.sh --zookeeper hadoop102:2181 --alter –-
topic first --partitions 6
Hbase
[atguigu@hadoop102 hbase]$ bin/start-hbase.sh
[atguigu@hadoop102 hbase]$ bin/stop-hbase.sh
[atguigu@hadoop102 hbase]$ bin/hbase shell
hbase(main):002:0> create 'student','info'
Flume监控之Ganglia
[atguigu@hadoop102 flume]$ sudo service httpd start
[atguigu@hadoop102 flume]$ sudo service gmetad start
[atguigu@hadoop102 flume]$ sudo service gmond start
Kafka监控之kafka-eagle
[atguigu@hadoop102 eagle]$ bin/ke.sh start
启动之前需要先启动ZK以及KAFKA