def order_points(pts):
# 一共四个坐标点
rect = np.zeros((4,2),dtype="float32")
# 按照顺序找到对应坐标0123分别是 左上,右上,右下,左下
# 计算左上,右下
s = pts.sum(axis=1)
rect[0]=pts[np.argmin(s)]
rect[2]=pts[np.argmax(s)]
# 计算右上,左下
d = np.diff(pts,axis=1)
rect[1]=pts[np.argmin(d)]
rect[3]=pts[np.argmax(d)]
return rect
def four_point_transform(img,pts):
# 获取输入坐标
rect = order_points(pts)
(tl,tr,br,bl) = rect
# 计算输入的w和h值
widthA = np.sqrt((br[0]-bl[0])**2+(br[1]-bl[1])**2)
widthB = np.sqrt((tr[0]-tl[0])**2+(tr[1]-tl[1])**2)
maxWidth = max(int(widthA),int(widthB))
heightA = np.sqrt((tr[0]-br[0])**2+(tr[1]-br[1])**2)
heightB = np.sqrt((tl[0]-bl[0])**2+(tl[1]-bl[1])**2)
maxHeight = max(int(heightA),int(heightB))
# 变换后对应坐标位置
dst = np.array([[0,0],
[maxWidth-1,0],
[maxWidth-1,maxHeight-1],
[0,maxHeight-1]],
dtype="float32")
# 计算变换矩阵
M = cv2.getPerspectiveTransform(rect,dst)
warped = cv2.warpPerspective(img,M,(maxWidth,maxHeight))
# 反回变换后的结果
return warped
def sort_contours(cnts,method="left-to-right"):
reverse = False
i = 0
if method == 'right-to-left' or method =='bottom-to-top':
reverse =True
if method == 'top-to-bottom' or method =='bottom-to-top':
i =1
boundingBoxes =[cv2.boundingRect(c) for c in cnts]
(cnts,boundingBoxes) = zip(*sorted(zip(cnts,boundingBoxes),
key=lambda b:b[1][i],reverse=reverse))
return cnts,boundingBoxes
3、寻找圆圈轮廓
def sort_contours(cnts,method="left-to-right"):
reverse = False
i = 0
if method == 'right-to-left' or method =='bottom-to-top':
reverse =True
if method == 'top-to-bottom' or method =='bottom-to-top':
i =1
boundingBoxes =[cv2.boundingRect(c) for c in cnts]
(cnts,boundingBoxes) = zip(*sorted(zip(cnts,boundingBoxes),
key=lambda b:b[1][i],reverse=reverse))
return cnts,boundingBoxes
dotCnt =None
if len(cnt)>0:
cnt = sorted(cnt,key = cv2.contourArea,reverse=True)
for c in cnt:
peri = cv2.arcLength(c,True)
approx = cv2.approxPolyDP(c,0.02*peri,True)
if len(approx)==4:
dotCnt=approx
warp = four_point_transform(gray,dotCnt.reshape(4,2))
# otsu's 阈值处理
thresh = cv2.threshold(warp,0,255,cv2.THRESH_BINARY_INV|
cv2.THRESH_OTSU)[1]
thresh_contours = thresh.copy()
# 找到每一个圆圈轮廓
cnt = cv2.findContours(thresh_contours,cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[0]
cv2.drawContours(thresh_contours,cnt,-1,(0,255,0),2)
questionCnts = []
4、输出每个轮廓,对比答案
# 遍历
for c in cnt:
# 计算比例和大小
(x,y,w,h) = cv2.boundingRect(c)
ar = w/float(h)
# 根据实际情况指定标准
if w>=20 and h>=20 and ar>0.9 and ar<1.1:
questionCnts.append(c)
# 按照从上到下进行排序
questionCnts = sort_contours(questionCnts,method='top-to-bottom')[0]
# cv2.drawContours(warp,questionCnts,1,(0,255,255),2)
# 每排有5个选项
for (q,i)in enumerate(np.arange(0,len(questionCnts),5)):
# 排序
cnts = sort_contours(questionCnts[i:i+5])[0]
bubbled = None
# 遍历每一个结果
correct=0
for (j,c)in enumerate(cnts):
# 使用mask来判断结果
mask = np.zeros(thresh.shape,dtype='uint8')
cv2.drawContours(mask,[c],-1,255,-1)
# 通过计算非零点数量来算是否选择这个答案
mask = cv2.bitwise_and(thresh,thresh,mask=mask)
total = cv2.countNonZero(mask)
# 通过阈值判断
if bubbled is None or total>bubbled[0]:
bubbled = (total,j)
# 对比正确答案
color = (0,0,255)
k = ANSWER_KEY[q]
# 判断正确
if k == bubbled[1]:
color = (0,255,0)
correct+=1
# 绘图
cv2.drawContours(warp,cnts[k],-1,color,2)
cv2.imshow("warp",warp)
cv2.waitKey()
cv2.destroyAllWindows()