SPWM叠加三次谐波后可以提高直流母线电压的利用率,其实如标题所示,SVPWM等价于SPWM叠加三次谐波。
开始推导
三相对称正弦相电压表达式如下:
{
u
a
=
U
m
sin
ω
t
u
b
=
U
m
sin
(
ω
t
−
2
3
π
)
u
c
=
U
m
sin
(
ω
t
+
2
3
π
)
\begin{cases} u_a=U_m\sin \omega t\\ u_b=U_m\sin \left( \omega t-\frac{2}{3}\pi \right)\\ u_c=U_m\sin \left( \omega t+\frac{2}{3}\pi \right)\\ \end{cases}
⎩⎪⎨⎪⎧ua=Umsinωtub=Umsin(ωt−32π)uc=Umsin(ωt+32π)
叠加三次谐波后,
{
u
a
=
U
m
sin
ω
t
+
A
sin
3
ω
t
u
b
=
U
m
sin
(
ω
t
−
2
3
π
)
+
A
sin
3
ω
t
u
c
=
U
m
sin
(
ω
t
+
2
3
π
)
+
A
sin
3
ω
t
\begin{cases} u_a=U_m\sin \omega t+A\sin 3\omega t\\ u_b=U_m\sin \left( \omega t-\frac{2}{3}\pi \right) +A\sin 3\omega t\\ u_c=U_m\sin \left( \omega t+\frac{2}{3}\pi \right) +A\sin 3\omega t\\ \end{cases}
⎩⎪⎨⎪⎧ua=Umsinωt+Asin3ωtub=Umsin(ωt−32π)+Asin3ωtuc=Umsin(ωt+32π)+Asin3ωt
将上式转化为单位式,
ν
=
sin
θ
o
+
γ
sin
3
θ
o
式中
γ
=
A
U
m
\nu =\sin \theta _o+\gamma \sin 3\theta _o \\ \text{式中}\gamma =\frac{A}{U_m}
ν=sinθo+γsin3θo式中γ=UmA
上式求导
d
ν
d
t
=
0
=
cos
θ
o
+
3
γ
cos
3
θ
o
\frac{\mathrm{d}\nu}{\mathrm{dt}}=0=\cos \theta _o+3\gamma \cos 3\theta _o
dtdν=0=cosθo+3γcos3θo
cos
3
θ
o
=
(
1
−
4
sin
2
θ
o
)
cos
θ
o
\cos 3\theta _o =\left( 1-4\sin ^2\theta _o \right) \cos \theta _o
cos3θo=(1−4sin2θo)cosθo
带入求导后的式子,可得
sin
θ
o
=
3
γ
+
1
12
γ
\sin \theta _o=\sqrt{\frac{3\gamma +1}{12\gamma}}
sinθo=12γ3γ+1
sin
3
θ
o
=
(
3
−
4
sin
2
θ
o
)
sin
θ
o
\sin 3\theta _o=\left( 3-4\sin ^2\theta _o \right) \sin \theta _o
sin3θo=(3−4sin2θo)sinθo
同理,带入可得
sin
3
θ
o
=
6
γ
−
1
3
γ
3
γ
+
1
12
γ
\sin 3\theta _o =\frac{6\gamma -1}{3\gamma}\sqrt{\frac{3\gamma +1}{12\gamma}}
sin3θo=3γ6γ−112γ3γ+1
将获得的结果带入单位式
ν
max
=
sin
θ
o
+
γ
sin
3
θ
o
=
6
γ
+
2
3
3
γ
+
1
12
γ
\nu _{\max}=\sin \theta _o+\gamma \sin 3\theta _o =\frac{6\gamma +2}{3}\sqrt{\frac{3\gamma +1}{12\gamma}}
νmax=sinθo+γsin3θo=36γ+212γ3γ+1
对上式求导
d
ν
max
d
γ
=
(
2
−
1
3
γ
)
3
γ
+
1
12
γ
\frac{\mathrm{d}\nu _{\max}}{\mathrm{d}\gamma} =\left( 2-\frac{1}{3\gamma} \right) \sqrt{\frac{3\gamma +1}{12\gamma}}
dγdνmax=(2−3γ1)12γ3γ+1
γ
=
1
6
\gamma =\frac{1}{6}
γ=61或
γ
=
−
1
3
(
舍去,它使得
ν
max
为零
)
\gamma =-\frac{1}{3}\left( \text{舍去,它使得}\nu _{\max}\text{为零} \right)
γ=−31(舍去,它使得νmax为零)
所以
A
=
1
6
U
m
\text{所以}A=\frac{1}{6}U_m
所以A=61Um
{
u
a
=
U
m
sin
ω
t
+
1
6
U
m
sin
3
ω
t
u
b
=
U
m
sin
(
ω
t
−
2
3
π
)
+
1
6
U
m
sin
3
ω
t
u
c
=
U
m
sin
(
ω
t
+
2
3
π
)
+
1
6
U
m
sin
3
ω
t
\begin{cases} u_a=U_m\sin \omega t+\frac{1}{6}U_m\sin 3\omega t\\ u_b=U_m\sin \left( \omega t-\frac{2}{3}\pi \right) +\frac{1}{6}U_m\sin 3\omega t\\ u_c=U_m\sin \left( \omega t+\frac{2}{3}\pi \right) +\frac{1}{6}U_m\sin 3\omega t\\ \end{cases}
⎩⎪⎨⎪⎧ua=Umsinωt+61Umsin3ωtub=Umsin(ωt−32π)+61Umsin3ωtuc=Umsin(ωt+32π)+61Umsin3ωt
将相电压修改为余弦函数的形式,最终推导出的数量关系是一致的,虽然符号是反的。
参考文献
[1] Pulse Width Modulation for Power Converters Principles and Practice, D. Grahame Holmes, Thomas A. Lipo, IEEE Press, p226-P229