确定SPWM注入三次谐波的幅值(SPWM+三次谐波=SVPWM)

SPWM叠加三次谐波后可以提高直流母线电压的利用率,其实如标题所示,SVPWM等价于SPWM叠加三次谐波。
开始推导
三相对称正弦相电压表达式如下:
{ u a = U m sin ⁡ ω t u b = U m sin ⁡ ( ω t − 2 3 π ) u c = U m sin ⁡ ( ω t + 2 3 π ) \begin{cases} u_a=U_m\sin \omega t\\ u_b=U_m\sin \left( \omega t-\frac{2}{3}\pi \right)\\ u_c=U_m\sin \left( \omega t+\frac{2}{3}\pi \right)\\ \end{cases} ⎩⎪⎨⎪⎧​ua​=Um​sinωtub​=Um​sin(ωt−32​π)uc​=Um​sin(ωt+32​π)​
叠加三次谐波后,
{ u a = U m sin ⁡ ω t + A sin ⁡ 3 ω t u b = U m sin ⁡ ( ω t − 2 3 π ) + A sin ⁡ 3 ω t u c = U m sin ⁡ ( ω t + 2 3 π ) + A sin ⁡ 3 ω t \begin{cases} u_a=U_m\sin \omega t+A\sin 3\omega t\\ u_b=U_m\sin \left( \omega t-\frac{2}{3}\pi \right) +A\sin 3\omega t\\ u_c=U_m\sin \left( \omega t+\frac{2}{3}\pi \right) +A\sin 3\omega t\\ \end{cases} ⎩⎪⎨⎪⎧​ua​=Um​sinωt+Asin3ωtub​=Um​sin(ωt−32​π)+Asin3ωtuc​=Um​sin(ωt+32​π)+Asin3ωt​
将上式转化为单位式,
ν = sin ⁡ θ o + γ sin ⁡ 3 θ o 式中 γ = A U m \nu =\sin \theta _o+\gamma \sin 3\theta _o \\ \text{式中}\gamma =\frac{A}{U_m} ν=sinθo​+γsin3θo​式中γ=Um​A​
上式求导
d ν d t = 0 = cos ⁡ θ o + 3 γ cos ⁡ 3 θ o \frac{\mathrm{d}\nu}{\mathrm{dt}}=0=\cos \theta _o+3\gamma \cos 3\theta _o dtdν​=0=cosθo​+3γcos3θo​
cos ⁡ 3 θ o = ( 1 − 4 sin ⁡ 2 θ o ) cos ⁡ θ o \cos 3\theta _o =\left( 1-4\sin ^2\theta _o \right) \cos \theta _o cos3θo​=(1−4sin2θo​)cosθo​
带入求导后的式子,可得
sin ⁡ θ o = 3 γ + 1 12 γ \sin \theta _o=\sqrt{\frac{3\gamma +1}{12\gamma}} sinθo​=12γ3γ+1​
sin ⁡ 3 θ o = ( 3 − 4 sin ⁡ 2 θ o ) sin ⁡ θ o \sin 3\theta _o=\left( 3-4\sin ^2\theta _o \right) \sin \theta _o sin3θo​=(3−4sin2θo​)sinθo​
同理,带入可得
sin ⁡ 3 θ o = 6 γ − 1 3 γ 3 γ + 1 12 γ \sin 3\theta _o =\frac{6\gamma -1}{3\gamma}\sqrt{\frac{3\gamma +1}{12\gamma}} sin3θo​=3γ6γ−1​12γ3γ+1​
将获得的结果带入单位式
ν max ⁡ = sin ⁡ θ o + γ sin ⁡ 3 θ o = 6 γ + 2 3 3 γ + 1 12 γ \nu _{\max}=\sin \theta _o+\gamma \sin 3\theta _o =\frac{6\gamma +2}{3}\sqrt{\frac{3\gamma +1}{12\gamma}} νmax​=sinθo​+γsin3θo​=36γ+2​12γ3γ+1​
对上式求导
d ν max ⁡ d γ = ( 2 − 1 3 γ ) 3 γ + 1 12 γ \frac{\mathrm{d}\nu _{\max}}{\mathrm{d}\gamma} =\left( 2-\frac{1}{3\gamma} \right) \sqrt{\frac{3\gamma +1}{12\gamma}} dγdνmax​​=(2−3γ1​)12γ3γ+1​
γ = 1 6 \gamma =\frac{1}{6} γ=61​或

γ = − 1 3 ( 舍去,它使得 ν max ⁡ 为零 ) \gamma =-\frac{1}{3}\left( \text{舍去,它使得}\nu _{\max}\text{为零} \right) γ=−31​(舍去,它使得νmax​为零)
所以 A = 1 6 U m \text{所以}A=\frac{1}{6}U_m 所以A=61​Um​
{ u a = U m sin ⁡ ω t + 1 6 U m sin ⁡ 3 ω t u b = U m sin ⁡ ( ω t − 2 3 π ) + 1 6 U m sin ⁡ 3 ω t u c = U m sin ⁡ ( ω t + 2 3 π ) + 1 6 U m sin ⁡ 3 ω t \begin{cases} u_a=U_m\sin \omega t+\frac{1}{6}U_m\sin 3\omega t\\ u_b=U_m\sin \left( \omega t-\frac{2}{3}\pi \right) +\frac{1}{6}U_m\sin 3\omega t\\ u_c=U_m\sin \left( \omega t+\frac{2}{3}\pi \right) +\frac{1}{6}U_m\sin 3\omega t\\ \end{cases} ⎩⎪⎨⎪⎧​ua​=Um​sinωt+61​Um​sin3ωtub​=Um​sin(ωt−32​π)+61​Um​sin3ωtuc​=Um​sin(ωt+32​π)+61​Um​sin3ωt​
将相电压修改为余弦函数的形式,最终推导出的数量关系是一致的,虽然符号是反的。

参考文献
[1] Pulse Width Modulation for Power Converters Principles and Practice, D. Grahame Holmes, Thomas A. Lipo, IEEE Press, p226-P229

上一篇:推导并实现双摆【两连杆】的逆运动学--write hello


下一篇:MyEclipse配置tomcat报错 - java.lang.UnsupportedClassVersionError: org/apache/lucene/store/Directory : Unsupported major.minor version 51.0