题意
一个n*m的区域内,放k个啦啦队员,第一行,最后一行,第一列,最后一列一定要放,一共有多少种方法。
思路
设A1表示第一行放,A2表示最后一行放,A3表示第一列放,A4表示最后一列放,则要求|A1∧A2∧A3∧A4|
由容斥原理可知|∪Ai| = Σ|Ai| - Σ|Ai∧Aj| + …… (+-)|Ai∧Aj∧……∧Ak|.
再由德摩根定律得:∧Ai = Cu(∪Cu(Ai)),所以|∧Ai| = S - |∪Cu(Ai)|.(Cu表示集合的非)
然后令A表示不放第一行,B表示不放最后一行,C表示不放第一列,D表示不放最后一列。
ANS = ALL-A-B-C-D+AB+AC+AD+BC+BD-ABC-ABD-BCD+ABCD
代码
#include
#include
#include
#include
#include
#include
#define MID(x,y) ((x+y)/2)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;const int MAXNUM = 505;
int C[MAXNUM][MAXNUM];
void cal_C(int n, int mod){
mem(C, 0);
C[0][0] = 1;
for (int i = 1; i