文章目录
1. 安装 PyMySQL
2. 连接对象
3. 游标对象
4. 增删改操作
cursor.execute(sql)
cursor.executemany(sql, seq_of_params)
5. 查询操作
6. ORM编程
常用 python ORM 库
learning from 《python web开发从入门到精通》
1. 安装 PyMySQL
conda 虚拟环境下安装 pip install pymysql
2. 连接对象
创建连接的一个 object
import pymysql try: connection = pymysql.connect( host='localhost', user='root', password='123456', db='michaeldata', charset='utf8', cursorclass=pymysql.cursors.DictCursor # 游标类型 ) print("连接成功:", connection) except Exception as e: print("连接失败:", e)
输出:连接成功: <pymysql.connections.Connection object at 0x00000205AC8E96D0>
成功连接后,获取的连接对象,有很多方法,常用的如下:
cursor() 获取游标对象,操作数据库
commit() 提交事务
rollback() 回滚事务
close() 关闭数据库连接
3. 游标对象
cursor = connection.cursor()
游标对象的常用方法:
execute(operation, [, param]) 执行数据库操作,SQL语句
executemany(operation, 参数序列) 批量执行操作
fetchone() 获取查询结果集里的下一条
fetchmany(size) 获取指定数量的记录
fetchall() 获取所有记录
close() 关闭游标
操作流程实例:
import pymysql try: connection = pymysql.connect( host='localhost', user='root', password='123456', db='michaeldata', charset='utf8', cursorclass=pymysql.cursors.DictCursor # 游标类型 ) print("连接成功:", connection) except Exception as e: print("连接失败:", e) # sql 语句 sql = ''' create table books( id int not null auto_increment, name varchar(255) not null, category varchar(50) not null, price decimal(10, 2) default '0', publish_time date default null, primary key (id) ) engine = InnoDB auto_increment=1 default charset = utf8mb4 collate = utf8mb4_0900_ai_ci; ''' cursor = connection.cursor() # 获取游标对象 cursor.execute(sql) # 执行sql语句 cursor.close() # 先关闭游标 connection.close() # 再关闭连接,或者使用 with as
4. 增删改操作
- 对于 增删改 ,使用
cursor.execute()
执行 SQL 语句后,默认不会自动提交,要使用connection.commit()
提交
-
insert
语句使用%s
作为占位符,可以防止SQL注入
cursor.execute(sql)
import pymysql try: connection = pymysql.connect( host='localhost', user='root', password='123456', db='michaeldata', charset='utf8', cursorclass=pymysql.cursors.DictCursor # 游标类型 ) print("连接成功:", connection) except Exception as e: print("连接失败:", e) # sql 语句 sql = ''' create table if not exists books( id int not null auto_increment, name varchar(255) not null, category varchar(50) not null, price decimal(10, 2) default '0', publish_time date default null, primary key (id) ) engine = InnoDB auto_increment=1 default charset = utf8mb4 collate = utf8mb4_0900_ai_ci; ''' cursor = connection.cursor() # 获取游标对象 cursor.execute(sql) # 执行sql语句 sql1 = 'insert into books(name, category, price, publish_time) values("python web开发", "python", "98.8", "2020-01-01")' cursor.execute(sql1) # 执行sql语句 connection.commit() # connection 提交才能生效 cursor.close() # 先关闭游标 connection.close() # 再关闭连接,或者使用 with as
cursor.executemany(sql, seq_of_params)
批量操作
import pymysql try: connection = pymysql.connect( host='localhost', user='root', password='123456', db='michaeldata', charset='utf8', cursorclass=pymysql.cursors.DictCursor # 游标类型 ) print("连接成功:", connection) except Exception as e: print("连接失败:", e) # sql 语句 sql = ''' create table if not exists books( id int not null auto_increment, name varchar(255) not null, category varchar(50) not null, price decimal(10, 2) default '0', publish_time date default null, primary key (id) ) engine = InnoDB auto_increment=1 default charset = utf8mb4 collate = utf8mb4_0900_ai_ci; ''' cursor = connection.cursor() # 获取游标对象 cursor.execute(sql) # 执行sql语句 # sql1 = 'insert into books(name, category, price, publish_time) values("python web开发", "python", "98.8", "2020-01-01")' # cursor.execute(sql1) # 执行sql语句 # connection.commit() # connection 提交才能生效 # 数据列表 data = [("零基础学Python", 'Python', '79.80', '2018-5-20'), ("Python从入门到精通", 'Python', '69.80', '2018-6-18'), ("零基础学PHP", 'PHP', '69.80', '2017-5-21'), ("PHP项目开发实战入门", 'PHP', '79.80', '2016-5-21'), ("零基础学Java", 'Java', '69.80', '2017-5-21'), ] try: cursor.executemany('insert into books(name, category, price, publish_time) values(%s, %s, %s, %s)', data) connection.commit() # connection 提交才能生效 except Exception as e: connection.rollback() # 回滚 cursor.close() # 先关闭游标 connection.close() # 再关闭连接,或者使用 with as
5. 查询操作
- 执行
select
查询,生成结果集,然后使用fetchone/fetchmany/fetchall ()
相关语句获取记录
import pymysql try: connection = pymysql.connect( host='localhost', user='root', password='123456', db='michaeldata', charset='utf8', cursorclass=pymysql.cursors.DictCursor # 游标类型 ) print("连接成功:", connection) except Exception as e: print("连接失败:", e) # sql 语句 sql = "select * from books order by price" with connection.cursor() as cursor: cursor.execute(sql) # 执行sql语句 result1 = cursor.fetchone() # 获取查询结果 result2 = cursor.fetchall() # 获取查询结果 print(result1) print("*" * 10) for res in result2: print(res) connection.close() # 关闭连接
输出结果:
连接成功: <pymysql.connections.Connection object at 0x00000216C72696D0> {'id': 5, 'name': 'Python从入门到精通', 'category': 'Python', 'price': Decimal('69.80'), 'publish_time': datetime.date(2018, 6, 18)} ********** {'id': 6, 'name': '零基础学PHP', 'category': 'PHP', 'price': Decimal('69.80'), 'publish_time': datetime.date(2017, 5, 21)} {'id': 8, 'name': '零基础学Java', 'category': 'Java', 'price': Decimal('69.80'), 'publish_time': datetime.date(2017, 5, 21)} {'id': 4, 'name': '零基础学Python', 'category': 'Python', 'price': Decimal('79.80'), 'publish_time': datetime.date(2018, 5, 20)} {'id': 7, 'name': 'PHP项目开发实战入门', 'category': 'PHP', 'price': Decimal('79.80'), 'publish_time': datetime.date(2016, 5, 21)} {'id': 3, 'name': 'python web开发', 'category': 'python', 'price': Decimal('98.80'), 'publish_time': datetime.date(2020, 1, 1)}
6. ORM编程
ORM Object Relational Mapping 对象关系映射
它把 数据库 映射为 对象
table - class
record - object
field - attribute
ORM 示例写法 data = Book.query.all()
好处:
数据模型利于重用代码
有很多现成工具完成预处理,事物等
基于 ORM 的业务代码简单语义好,易理解
不必编写性能不佳的 sql
缺点:
ORM 库不是轻量级工具,学习成本高
复杂的查询,无法表达 或者 性能不如原生SQL
ORM 抽象掉了数据库层,无法了解底层操作,也就无法定制特殊的SQL
常用 python ORM 库
Django ORM,跟 Django 结合紧密
SQLAlchemy比较成熟
Peewee轻量级,基于SQLAlchemy开发
Storm 中型,允许跨数据库查询