1、复杂多面体
Ry[t_] := {{Cos[t], 0, Sin[t]}, {0, 1, 0}, {-Sin[t], 0, Cos[t]}}; Rz[t_] := {{Cos[t], -Sin[t], 0}, {Sin[t], Cos[t], 0}, {0, 0, 1}}; n = 6; t2 = Pi/5; t1 = t2/2; alpha = ArcCos[-Sqrt[5.0]/5]; dz = Sin[t1]^2 Tan[alpha/2]; z = GoldenRatio Tan[alpha/2]/2 + dz; scale = (Cos[t1] - Sqrt[3.0 (1 - Cos[t2])/2])/(2 Cos[t2] - 1); R = scale Rz[ArcCos[Cos[t1] + dz^2 (scale - 1)^2/(2 scale)]]; verts = {}; verts0 = Table[{Cos[i t2], Sin[i t2], (2 Mod[i, 2] - 1) dz}, {i, 0, 9}]; Do[verts = Join[verts, Map[{0, 0, z} + # &, verts0]]; verts0 = Map[R.# &, verts0], {n + 1}]; faces = Flatten[ Table[10 i + {{j, Mod[j, 10] + 1, j + 10}, {j + 1, j + 10, Mod[j + 10, 20] + 1}}, {i, 0, n - 1}, {j, 1, 10}], 2]; ToPolys[verts_, faces_] := Map[Polygon[verts[[#]]] &, faces]; Show[Graphics3D[{ToPolys[verts, faces], Table[{ToPolys[Map[Rz[t + t2].Ry[Pi - alpha].# &, verts], faces], ToPolys[Map[Rz[t].Ry[alpha].Rz[t2].# &, verts], faces]}, {t, 2 t2, 2 Pi, 2 t2}], ToPolys[Map[Ry[Pi].# &, verts], faces]}]]
欢迎加群:707914447