Yolov4-tiny pth转onnx转tensorrt

Yolov4-tiny pth模型转换成onnx

载入模型并完成转换

def pth2onnx(pth_model,input,model_name):
    torch.onnx.export(pth_model,                           # 需要转换的模型
                    input,                                 # 模型的输入
                    "model_data/%s.onnx" % model_name,     # 保存位置
                    export_params=True,                    # 是否在模型中保存训练过的参数
                    opset_version=11,                      # ONNX版本
                    input_names=['input'],
                    
                    )
    
    # 转化为可以再netro查看每步尺寸的模型
    onnx.save(onnx.shape_inference.infer_shapes(onnx.load("model_data/%s.onnx" % model_name)), "model_data/%s.onnx" % model_name)
    print('%s.pth convert to onnx is done' % model_name)
    
    batch_size = 1
    model_name = 'Digital_large_crop'
    class_path = '../data/%s/classes.txt' % model_name
    model_path = 'model_data/%s.pth' % model_name

    yolo = YoloBody(anchors_mask=[[3,4,5],[1,2,3]],num_classes=11, phi = 0)
    yolo.load_state_dict(torch.load('model_data/%s.pth'%model_name))
    x = torch.ones(batch_size, 3, 416, 416, requires_grad=False)
    # out1,out2 = yolo(x)
    
    pth2onnx(yolo,x,model_name)

模型可视化

在网站 https://netron.app/ 中加载生成的onnx模型,便可以看到整个网络结构。
Yolov4-tiny pth转onnx转tensorrt

载入onnx模型

加载onnx模型,对比pth模型推理的结果是否正确。

def compare_pth_onnx(model_name):
    session = onnxruntime.InferenceSession('model_data/%s.onnx' %model_name)
    yolo = YoloBody(anchors_mask=[[3,4,5],[1,2,3]],num_classes=11, phi = 0)
    yolo.load_state_dict(torch.load('model_data/%s.pth'%model_name))
    yolo.evel()
    img = Image.open('../data/Digital_crop/JPEGImages/1.jpg')
    image_data  = resize_image(img, (416,416), False)
    #---------------------------------------------------------#
    #   添加上batch_size维度
    #---------------------------------------------------------#
    image_data  = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)
    
    pth_out = yolo(torch.from_numpy(image_data))
    onnx_out = session.run([], {"input": image_data})
    
    print(torch.max(torch.abs(pth_out[0]-torch.from_numpy(onnx_out[0]))))

Yolov4-tiny pth转onnx转tensorrt

Yolov4-tiny pth转onnx转tensorrt

发现推理结果基本吻合,查看模型权重是否一样。
Yolov4-tiny pth转onnx转tensorrt
Yolov4-tiny pth转onnx转tensorrt
发现第一个第一个卷积层的BN权重并不相同,查找原因。查阅官方文档可以看到在训练/评估模式中,Dropout,BatchNorm等操作会有不同的参数值。 发现是因为导出时Conv层和Bn层整合到了一起,torch.onnx.export 时添加参数 training=2,可以将conv和bn 分开显示。
Yolov4-tiny pth转onnx转tensorrt
Yolov4-tiny pth转onnx转tensorrt
这时我们可以看到,参数是对应上了的。那之前的参数是怎么来的呢?参考文章 https://zhuanlan.zhihu.com/p/353697121 通过公式融合参数:
Yolov4-tiny pth转onnx转tensorrt
结果与前图对应上了。至此验证pth转换onnx成功。

onnx转trt

首先配置好环境可以参考我之前的文章 https://blog.csdn.net/weixin_44241884/article/details/122084953

locate trtexec
# 找到转换程序的路径
/yourtrtexecpath/trtexec --onnx=youmodelname.onnx --saveEngine=yourmodelname.trt


[01/11/2022-15:34:10] [I] Average on 10 runs - GPU latency: 0.771057 ms - Host latency: 0.976514 ms (end to end 1.41353 ms, enqueue 0.361804 ms)
[01/11/2022-15:34:10] [I] Average on 10 runs - GPU latency: 0.788892 ms - Host latency: 1.04755 ms (end to end 1.46624 ms, enqueue 0.568628 ms)
[01/11/2022-15:34:10] [I] Average on 10 runs - GPU latency: 0.768213 ms - Host latency: 0.977173 ms (end to end 1.40577 ms, enqueue 0.404419 ms)
[01/11/2022-15:34:10] [I] Host Latency
[01/11/2022-15:34:10] [I] min: 0.946533 ms (end to end 0.971191 ms)
[01/11/2022-15:34:10] [I] max: 3.65527 ms (end to end 4.02917 ms)
[01/11/2022-15:34:10] [I] mean: 0.983374 ms (end to end 1.39919 ms)
[01/11/2022-15:34:10] [I] median: 0.972412 ms (end to end 1.39661 ms)
[01/11/2022-15:34:10] [I] percentile: 1.11963 ms at 99% (end to end 1.52612 ms at 99%)
[01/11/2022-15:34:10] [I] throughput: 0 qps
[01/11/2022-15:34:10] [I] walltime: 3.00267 s
[01/11/2022-15:34:10] [I] Enqueue Time
[01/11/2022-15:34:10] [I] min: 0.267456 ms
[01/11/2022-15:34:10] [I] max: 3.63794 ms
[01/11/2022-15:34:10] [I] median: 0.374756 ms
[01/11/2022-15:34:10] [I] GPU Compute
[01/11/2022-15:34:10] [I] min: 0.74646 ms
[01/11/2022-15:34:10] [I] max: 3.43762 ms
[01/11/2022-15:34:10] [I] mean: 0.767578 ms
[01/11/2022-15:34:10] [I] median: 0.764893 ms
[01/11/2022-15:34:10] [I] percentile: 0.811005 ms at 99%
[01/11/2022-15:34:10] [I] total compute time: 2.97513 s

至此转换成功,后续通过python或者c++读取trt文件推理,还需学习了解。

上一篇:H5 app 拦截再按一次退出应用,改成单击back隐藏到后台


下一篇:【模型推理】ubuntu 配置和使用 openvino