chapter18——PCA实现

1 手写实现PCA

import numpy as np

class PCA():
    # 计算协方差矩阵
    def calc_cov(self, X):
        m = X.shape[0]
        # 数据标准化,X的每列减去列均值
        X = (X - np.mean(X, axis=0))  
        return 1 / m * np.matmul(X.T, X)
    def pca(self, X, n_components):
        # 计算协方差矩阵
        cov_matrix = self.calc_cov(X)
        # 计算协方差矩阵的特征值和对应特征向量
        eigenvalues, eigenvectors = np.linalg.eig(cov_matrix)
        # 对特征值排序x
        idx = eigenvalues.argsort()[::-1]
        # 取最大的前n_component组
        eigenvectors = eigenvectors[:, idx] #按特征值大小,从大到小排序
        eigenvectors = eigenvectors[:, :n_components] #选取前 n_components 组特征向量
        print("eigenvectors.shape = \n",eigenvectors.shape)
        print("eigenvectors = \n",eigenvectors) #一个特征向量是一列
        # Y=PX转换
        return np.matmul(X, eigenvectors)

补充:

2 导入数据集

from sklearn import datasets
import matplotlib.pyplot as plt
# 导入sklearn数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
print(X.shape)

输出:

(150, 4)

3 手写版PCA可视化

# 将数据降维到3个主成分
X_trans = PCA().pca(X, 3)
# 颜色列表
colors = ['navy', 'turquoise', 'darkorange']
# 绘制不同类别
for c, i, target_name in zip(colors, [0,1,2], iris.target_names):
    plt.scatter(X_trans[y == i, 0], X_trans[y == i, 1],color=c, lw=1, label=target_name)
# 添加图例
plt.legend()
plt.show();

输出:

eigenvectors.shape = 
 (4, 3)
eigenvectors = 
 [[ 0.36138659 -0.65658877 -0.58202985]
 [-0.08452251 -0.73016143  0.59791083]
 [ 0.85667061  0.17337266  0.07623608]
 [ 0.3582892   0.07548102  0.54583143]]
  chapter18——PCA实现

4 sklearn降维模块

# 导入sklearn降维模块
from sklearn import decomposition
# 创建pca模型实例,主成分个数为3个
pca = decomposition.PCA(n_components=3)
# 模型拟合
pca.fit(X)
# 拟合模型并将模型应用于数据X
X_trans = pca.transform(X)

# 颜色列表
colors = ['navy', 'turquoise', 'darkorange']
# 绘制不同类别
for c, i, target_name in zip(colors, [0,1,2], iris.target_names):
    plt.scatter(X_trans[y == i, 0], X_trans[y == i, 1], 
            color=c, lw=2, label=target_name)
# 添加图例
plt.legend()
plt.show();

结果:

  chapter18——PCA实现

 

 

 

上一篇:第二章:机器学习的流程


下一篇:从零实现深度学习框架——动手实现Softmax回归