python 运行 hadoop 2.0 mapreduce 程序

python 运行 hadoop 2.0 mapreduce 程序
参考网址:
http://asfr.blogbus.com/logs/44208067.html

bin/hadoop jar ./share/hadoop/tools/lib/hadoop-streaming-2.2.0.jar -mapper /data/hadoop/mapper.py -reducer /data/hadoop/reducer.py -input /in/* -output /py_out -file /data/hadoop/mapper.py -file /data/hadoop/reducer.py #!/usr/bin/python # coding=utf-8 import sys # input comes from STDIN (standard input) for line in sys.stdin: # remove leading and trailing whitespace line = line.strip() # split the line into words words = line.split() # increase counters for word in words: # write the results to STDOUT (standard output); # what we output here will be the input for the # Reduce step, i.e. the input for reducer.py # # tab-delimited; the trivial word count is 1 print %s\t%s % (word, 1) #!/usr/bin/python # coding=utf-8 from operator import itemgetter import sys # maps words to their counts word2count = {} # input comes from STDIN for line in sys.stdin: # remove leading and trailing whitespace line = line.strip() # parse the input we got from mapper.py word, count = line.split(\t, 1) # convert count (currently a string) to int try: count = int(count) word2count[word] = word2count.get(word, 0) + count except ValueError: # count was not a number, so silently # ignore/discard this line pass # sort the words lexigraphically; # # this step is NOT required, we just do it so that our # final output will look more like the official Hadoop # word count examples sorted_word2count = sorted(word2count.items(), key=itemgetter(0)) # write the results to STDOUT (standard output) for word, count in sorted_word2count: print %s\t%s% (word, count)



packageJobJar: [/data/hadoop/mapper.py, /data/hadoop/reducer.py, /data/hadoop/hadoop_tmp/hadoop-unjar4601454529868960285/] [] /tmp/streamjob2970217681900457939.jar tmpDir=null
14/03/21 16:23:09 INFO client.RMProxy: Connecting to ResourceManager at /192.168.2.200:8032
14/03/21 16:23:09 INFO client.RMProxy: Connecting to ResourceManager at /192.168.2.200:8032
14/03/21 16:23:10 INFO mapred.FileInputFormat: Total input paths to process : 2
14/03/21 16:23:10 INFO mapreduce.JobSubmitter: number of splits:2
14/03/21 16:23:10 INFO Configuration.deprecation: user.name is deprecated. Instead, use mapreduce.job.user.name
14/03/21 16:23:10 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
14/03/21 16:23:10 INFO Configuration.deprecation: mapred.cache.files.filesizes is deprecated. Instead, use mapreduce.job.cache.files.filesizes
14/03/21 16:23:10 INFO Configuration.deprecation: mapred.cache.files is deprecated. Instead, use mapreduce.job.cache.files
14/03/21 16:23:10 INFO Configuration.deprecation: mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
14/03/21 16:23:10 INFO Configuration.deprecation: mapred.mapoutput.value.class is deprecated. Instead, use mapreduce.map.output.value.class
14/03/21 16:23:10 INFO Configuration.deprecation: mapred.job.name is deprecated. Instead, use mapreduce.job.name
14/03/21 16:23:10 INFO Configuration.deprecation: mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir
14/03/21 16:23:10 INFO Configuration.deprecation: mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
14/03/21 16:23:10 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
14/03/21 16:23:10 INFO Configuration.deprecation: mapred.cache.files.timestamps is deprecated. Instead, use mapreduce.job.cache.files.timestamps
14/03/21 16:23:10 INFO Configuration.deprecation: mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
14/03/21 16:23:10 INFO Configuration.deprecation: mapred.mapoutput.key.class is deprecated. Instead, use mapreduce.map.output.key.class
14/03/21 16:23:10 INFO Configuration.deprecation: mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
14/03/21 16:23:10 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1394086709210_0008
14/03/21 16:23:10 INFO impl.YarnClientImpl: Submitted application application_1394086709210_0008 to ResourceManager at /192.168.2.200:8032
14/03/21 16:23:10 INFO mapreduce.Job: The url to track the job: http://master:8088/proxy/application_1394086709210_0008/
14/03/21 16:23:10 INFO mapreduce.Job: Running job: job_1394086709210_0008
14/03/21 16:23:14 INFO mapreduce.Job: Job job_1394086709210_0008 running in uber mode : false
14/03/21 16:23:14 INFO mapreduce.Job:  map 0% reduce 0%
14/03/21 16:23:19 INFO mapreduce.Job:  map 100% reduce 0%
14/03/21 16:23:23 INFO mapreduce.Job:  map 100% reduce 100%
14/03/21 16:23:24 INFO mapreduce.Job: Job job_1394086709210_0008 completed successfully
14/03/21 16:23:24 INFO mapreduce.Job: Counters: 43
    File System Counters
        FILE: Number of bytes read=47
        FILE: Number of bytes written=248092
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=197
        HDFS: Number of bytes written=25
        HDFS: Number of read operations=9
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=2
    Job Counters
        Launched map tasks=2
        Launched reduce tasks=1
        Data-local map tasks=2
        Total time spent by all maps in occupied slots (ms)=5259
        Total time spent by all reduces in occupied slots (ms)=2298
    Map-Reduce Framework
        Map input records=2
        Map output records=4
        Map output bytes=33
        Map output materialized bytes=53
        Input split bytes=172
        Combine input records=0
        Combine output records=0
        Reduce input groups=3
        Reduce shuffle bytes=53
        Reduce input records=4
        Reduce output records=3
        Spilled Records=8
        Shuffled Maps =2
        Failed Shuffles=0
        Merged Map outputs=2
        GC time elapsed (ms)=71
        CPU time spent (ms)=1300
        Physical memory (bytes) snapshot=678060032
        Virtual memory (bytes) snapshot=2662100992
        Total committed heap usage (bytes)=514326528
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters
        Bytes Read=25
    File Output Format Counters
        Bytes Written=25
14/03/21 16:23:24 INFO streaming.StreamJob: Output directory: /py_out



1,hadoop上在java开发可用:
 
FileSplit fileSplit = (FileSplit)reporter.getInputSplit();
String fileName = fileSplit.getPath().getName();
来获取文件名称。
,2,同样python开发时,可以用:
 
来获取文件名:
 
import os
 
os.environ["map_input_file"]
这里的 map_input_file 相当于map.input.file




python 运行 hadoop 2.0 mapreduce 程序

python 运行 hadoop 2.0 mapreduce 程序,布布扣,bubuko.com

python 运行 hadoop 2.0 mapreduce 程序

上一篇: 仿微信,多人群聊,聊天软件系统,支持红包功能