MySQL索引类型及优化

索引是快速搜索的关键。MySQL索引的建立对于MySQL的高效运行是很重要的。下面介绍几种常见的MySQL索引类型。

在数据库表中,对字段建立索引可以大大提高查询速度。假如我们创建了一个 mytable表:

CREATE TABLE mytable(

ID INT NOT NULL,

username VARCHAR(16) NOT NULL

);

我们随机向里面插入了10000条记录,其中有一条:5555, admin。

在查找username="admin"的记录 SELECT * FROM mytable WHERE username=‘admin’;时,如果在username上已经建立了索引,MySQL无须任何扫描,即准确可找到该记录。相反,MySQL会扫描所有记录,即要查询10000条记录。

索引分单列索引和组合索引。单列索引,即一个索引只包含单个列,一个表可以有多个单列索引,但这不是组合索引。组合索引,即一个索包含多个列。

MySQL索引类型包括:

(1)普通索引

这是最基本的索引,它没有任何限制。它有以下几种创建方式:

◆创建索引

CREATE INDEX indexName ON mytable(username(length));
如果是CHAR,VARCHAR类型,length可以小于字段实际长度;如果是BLOB和TEXT类型,必须指定 length,下同。

◆修改表结构

ALTER mytable ADD INDEX [indexName] ON (username(length))
◆创建表的时候直接指定

CREATE TABLE mytable(

ID INT NOT NULL,

username VARCHAR(16) NOT NULL,

INDEX [indexName] (username(length))

);
删除索引的语法:

DROP INDEX [indexName] ON mytable;
(2)唯一索引

它与前面的普通索引类似,不同的就是:索引列的值必须唯一,但允许有空值。如果是组合索引,则列值的组合必须唯一。它有以下几种创建方式:

◆创建索引

CREATE UNIQUE INDEX indexName ON mytable(username(length))
◆修改表结构

ALTER mytable ADD UNIQUE [indexName] ON (username(length))
◆创建表的时候直接指定

CREATE TABLE mytable(

ID INT NOT NULL,

username VARCHAR(16) NOT NULL,

UNIQUE [indexName] (username(length))

);
(3)主键索引

它是一种特殊的唯一索引,不允许有空值。一般是在建表的时候同时创建主键索引:

CREATE TABLE mytable(

ID INT NOT NULL,

username VARCHAR(16) NOT NULL,

PRIMARY KEY(ID)

);
当然也可以用 ALTER 命令。记住:一个表只能有一个主键。

(4)组合索引

为了形象地对比单列索引和组合索引,为表添加多个字段:

CREATE TABLE mytable(

ID INT NOT NULL,

username VARCHAR(16) NOT NULL,

city VARCHAR(50) NOT NULL,

age INT NOT NULL

);
为了进一步榨取MySQL的效率,就要考虑建立组合索引。就是将 name, city, age建到一个索引里:

ALTER TABLE mytable ADD INDEX name_city_age (name(10),city,age);
建表时,usernname长度为 16,这里用 10。这是因为一般情况下名字的长度不会超过10,这样会加速索引查询速度,还会减少索引文件的大小,提高INSERT的更新速度。

如果分别在 usernname,city,age上建立单列索引,让该表有3个单列索引,查询时和上述的组合索引效率也会大不一样,远远低于我们的组合索引。虽然此时有了三个索引,但MySQL只能用到其中的那个它认为似乎是最有效率的单列索引。

建立这样的组合索引,其实是相当于分别建立了下面三组组合索引:

usernname,city,age

usernname,city

usernname
为什么没有 city,age这样的组合索引呢?这是因为MySQL组合索引“最左前缀”的结果。简单的理解就是只从最左面的开始组合。并不是只要包含这三列的查询都会用到该组合索引,下面的几个SQL就会用到这个组合索引:

SELECT * FROM mytable WHREE username=“admin” AND city=“郑州”

SELECT * FROM mytable WHREE username=“admin”
而下面几个则不会用到:

SELECT * FROM mytable WHREE age=20 AND city=“郑州”

SELECT * FROM mytable WHREE city=“郑州”
(5)建立索引的时机

到这里我们已经学会了建立索引,那么我们需要在什么情况下建立索引呢?一般来说,在WHERE和JOIN中出现的列需要建立索引,但也不完全如此,因为MySQL只对<,<=,=,>,>=,BETWEEN,IN,以及某些时候的LIKE才会使用索引。例如:

SELECT t.Name

FROM mytable t LEFT JOIN mytable m

ON t.Name=m.username WHERE m.age=20 AND m.city=‘郑州’
此时就需要对city和age建立索引,由于mytable表的userame也出现在了JOIN子句中,也有对它建立索引的必要。

刚才提到只有某些时候的LIKE才需建立索引。因为在以通配符%和_开头作查询时,MySQL不会使用索引。例如下句会使用索引:

SELECT * FROM mytable WHERE username like’admin%’
而下句就不会使用:

SELECT * FROM mytable WHEREt Name like’%admin’
因此,在使用LIKE时应注意以上的区别。

(6)索引的不足之处

上面都在说使用索引的好处,但过多的使用索引将会造成滥用。因此索引也会有它的缺点:

◆虽然索引大大提高了查询速度,同时却会降低更新表的速度,如对表进行INSERT、UPDATE和DELETE。因为更新表时,MySQL不仅要保存数据,还要保存一下索引文件。

◆建立索引会占用磁盘空间的索引文件。一般情况这个问题不太严重,但如果你在一个大表上创建了多种组合索引,索引文件的会膨胀很快。

索引只是提高效率的一个因素,如果你的MySQL有大数据量的表,就需要花时间研究建立最优秀的索引,或优化查询语句。

(7)使用索引的注意事项

使用索引时,有以下一些技巧和注意事项:

◆索引不会包含有NULL值的列

只要列中包含有NULL值都将不会被包含在索引中,复合索引中只要有一列含有NULL值,那么这一列对于此复合索引就是无效的。所以我们在数据库设计时不要让字段的默认值为NULL。

◆使用短索引

对串列进行索引,如果可能应该指定一个前缀长度。例如,如果有一个CHAR(255)的列,如果在前10个或20个字符内,多数值是惟一的,那么就不要对整个列进行索引。短索引不仅可以提高查询速度而且可以节省磁盘空间和I/O操作。

◆索引列排序

MySQL查询只使用一个索引,因此如果where子句中已经使用了索引的话,那么order by中的列是不会使用索引的。因此数据库默认排序可以符合要求的情况下不要使用排序操作;尽量不要包含多个列的排序,如果需要最好给这些列创建复合索引。

◆like语句操作

一般情况下不鼓励使用like操作,如果非使用不可,如何使用也是一个问题。like “%aaa%” 不会使用索引而like “aaa%”可以使用索引。

◆不要在列上进行运算

select * from users where YEAR(adddate)<2007;
将在每个行上进行运算,这将导致索引失效而进行全表扫描,因此我们可以改成

select * from users where adddate<‘2007-01-01’;
◆不使用NOT IN和<>操作

以上,就对其中MySQL索引类型进行了介绍。

索引对查询的速度有着至关重要的影响,理解索引也是进行数据库性能调优的起点。考虑如下情况,假设数据库中一个表有10^6条记 录,DBMS的页面大小为4K,并存储100条记录。如果没有索引,查询将对整个表进行扫描,最坏的情况下,如果所有数据页都不在内存,需要读取10^4 个页面,如果这104个页面在磁盘上随机分布,需要进行104次I/O,假设磁盘每次I/O时间为10ms(忽略数据传输时间),则总共需要 100s(但实际上要好很多很多)。如果对之建立B-Tree索引,则只需要进行log100(10^6)=3次页面读取,最坏情况下耗时30ms。这就 是索引带来的效果,很多时候,当你的应用程序进行SQL查询速度很慢时,应该想想是否可以建索引。进入正题:

第二章、索引与优化

1、选择索引的数据类型

MySQL支持很多数据类型,选择合适的数据类型存储数据对性能有很大的影响。通常来说,可以遵循以下一些指导原则:

(1)越小的数据类型通常更好:越小的数据类型通常在磁盘、内存和CPU缓存中都需要更少的空间,处理起来更快。
(2)简单的数据类型更好:整型数据比起字符,处理开销更小,因为字符串的比较更复杂。在MySQL中,应该用内置的日期和时间数据类型,而不是用字符串来存储时间;以及用整型数据类型存储IP地址。
(3)尽量避免NULL:应该指定列为NOT NULL,除非你想存储NULL。在MySQL中,含有空值的列很难进行查询优化,因为它们使得索引、索引的统计信息以及比较运算更加复杂。你应该用0、一个特殊的值或者一个空串代替空值。

1.1、选择标识符
选择合适的标识符是非常重要的。选择时不仅应该考虑存储类型,而且应该考虑MySQL是怎样进行运算和比较的。一旦选定数据类型,应该保证所有相关的表都使用相同的数据类型。
(1) 整型:通常是作为标识符的最好选择,因为可以更快的处理,而且可以设置为AUTO_INCREMENT。

(2) 字符串:尽量避免使用字符串作为标识符,它们消耗更好的空间,处理起来也较慢。而且,通常来说,字符串都是随机的,所以它们在索引中的位置也是随机的,这会导致页面分裂、随机访问磁盘,聚簇索引分裂(对于使用聚簇索引的存储引擎)。

2、索引入门
对于任何DBMS,索引都是进行优化的最主要的因素。对于少量的数据,没有合适的索引影响不是很大,但是,当随着数据量的增加,性能会急剧下降。
如果对多列进行索引(组合索引),列的顺序非常重要,MySQL仅能对索引最左边的前缀进行有效的查找。例如:
假 设存在组合索引it1c1c2(c1,c2),查询语句select * from t1 where c1=1 and c2=2能够使用该索引。查询语句select * from t1 where c1=1也能够使用该索引。但是,查询语句select * from t1 where c2=2不能够使用该索引,因为没有组合索引的引导列,即,要想使用c2列进行查找,必需出现c1等于某值。

2.1、索引的类型
索引是在存储引擎中实现的,而不是在服务器层中实现的。所以,每种存储引擎的索引都不一定完全相同,并不是所有的存储引擎都支持所有的索引类型。
2.1.1、B-Tree索引
假设有如下一个表:

CREATE TABLE People (

last_name varchar(50) not null,

first_name varchar(50) not null,

dob date not null,

gender enum(‘m’, ‘f’) not null,

key(last_name, first_name, dob)

);

其索引包含表中每一行的last_name、first_name和dob列。其结构大致如下:

MySQL索引类型及优化

索引存储的值按索引列中的顺序排列。可以利用B-Tree索引进行全关键字、关键字范围和关键字前缀查询,当然,如果想使用索引,你必须保证按索引的最左边前缀(leftmost prefix of the index)来进行查询。
(1)匹配全值(Match the full value):对索引中的所有列都指定具体的值。例如,上图中索引可以帮助你查找出生于1960-01-01的Cuba Allen。
(2)匹配最左前缀(Match a leftmost prefix):你可以利用索引查找last name为Allen的人,仅仅使用索引中的第1列。
(3)匹配列前缀(Match a column prefix):例如,你可以利用索引查找last name以J开始的人,这仅仅使用索引中的第1列。
(4)匹配值的范围查询(Match a range of values):可以利用索引查找last name在Allen和Barrymore之间的人,仅仅使用索引中第1列。
(5)匹配部分精确而其它部分进行范围匹配(Match one part exactly and match a range on another part):可以利用索引查找last name为Allen,而first name以字母K开始的人。
(6)仅对索引进行查询(Index-only queries):如果查询的列都位于索引中,则不需要读取元组的值。
由于B-树中的节点都是顺序存储的,所以可以利用索引进行查找(找某些值),也可以对查询结果进行ORDER BY。当然,使用B-tree索引有以下一些限制:
(1) 查询必须从索引的最左边的列开始。关于这点已经提了很多遍了。例如你不能利用索引查找在某一天出生的人。
(2) 不能跳过某一索引列。例如,你不能利用索引查找last name为Smith且出生于某一天的人。
(3) 存储引擎不能使用索引中范围条件右边的列。例如,如果你的查询语句为WHERE last_name=“Smith” AND first_name LIKE ‘J%’ AND dob=‘1976-12-23’,则该查询只会使用索引中的前两列,因为LIKE是范围查询。

2.1.2、Hash索引
MySQL 中,只有Memory存储引擎显示支持hash索引,是Memory表的默认索引类型,尽管Memory表也可以使用B-Tree索引。Memory存储 引擎支持非唯一hash索引,这在数据库领域是罕见的,如果多个值有相同的hash code,索引把它们的行指针用链表保存到同一个hash表项中。
假设创建如下一个表:
CREATE TABLE testhash (
fname VARCHAR(50) NOT NULL,
lname VARCHAR(50) NOT NULL,
KEY USING HASH(fname)
) ENGINE=MEMORY;
包含的数据如下:
MySQL索引类型及优化

假设索引使用hash函数f( ),如下:
MySQL索引类型及优化

f(‘Arjen’) = 2323

f(‘Baron’) = 7437

f(‘Peter’) = 8784

f(‘Vadim’) = 2458

此时,索引的结构大概如下:

Slots是有序的,但是记录不是有序的。当你执行
mysql> SELECT lname FROM testhash WHERE fname=‘Peter’;
MySQL会计算’Peter’的hash值,然后通过它来查询索引的行指针。因为f(‘Peter’) = 8784,MySQL会在索引中查找8784,得到指向记录3的指针。
因为索引自己仅仅存储很短的值,所以,索引非常紧凑。Hash值不取决于列的数据类型,一个TINYINT列的索引与一个长字符串列的索引一样大。

Hash索引有以下一些限制:
(1)由于索引仅包含hash code和记录指针,所以,MySQL不能通过使用索引避免读取记录。但是访问内存中的记录是非常迅速的,不会对性造成太大的影响。
(2)不能使用hash索引排序。
(3)Hash索引不支持键的部分匹配,因为是通过整个索引值来计算hash值的。
(4)Hash索引只支持等值比较,例如使用=,IN( )和<=>。对于WHERE price>100并不能加速查询。
2.1.3、空间(R-Tree)索引
MyISAM支持空间索引,主要用于地理空间数据类型,例如GEOMETRY。
2.1.4、全文(Full-text)索引
全文索引是MyISAM的一个特殊索引类型,主要用于全文检索。

3、高性能的索引策略
3.1、聚簇索引(Clustered Indexes)
聚 簇索引保证关键字的值相近的元组存储的物理位置也相同(所以字符串类型不宜建立聚簇索引,特别是随机字符串,会使得系统进行大量的移动操作),且一个表只 能有一个聚簇索引。因为由存储引擎实现索引,所以,并不是所有的引擎都支持聚簇索引。目前,只有solidDB和InnoDB支持。
聚簇索引的结构大致如下:
MySQL索引类型及优化

注: 叶子页面包含完整的元组,而内节点页面仅包含索引的列(索引的列为整型)。一些DBMS允许用户指定聚簇索引,但是MySQL的存储引擎到目前为止都不支 持。InnoDB对主键建立聚簇索引。如果你不指定主键,InnoDB会用一个具有唯一且非空值的索引来代替。如果不存在这样的索引,InnoDB会定义 一个隐藏的主键,然后对其建立聚簇索引。一般来说,DBMS都会以聚簇索引的形式来存储实际的数据,它是其它二级索引的基础。

3.1.1、InnoDB和MyISAM的数据布局的比较
为了更加理解聚簇索引和非聚簇索引,或者primary索引和second索引(MyISAM不支持聚簇索引),来比较一下InnoDB和MyISAM的数据布局,对于如下表:

CREATE TABLE layout_test (

col1 int NOT NULL,

col2 int NOT NULL,

PRIMARY KEY(col1),

KEY(col2)

);

假设主键的值位于1—10,000之间,且按随机顺序插入,然后用OPTIMIZE TABLE进行优化。col2随机赋予1—100之间的值,所以会存在许多重复的值。
(1) MyISAM的数据布局
其布局十分简单,MyISAM按照插入的顺序在磁盘上存储数据,如下:
MySQL索引类型及优化

注:左边为行号(row number),从0开始。因为元组的大小固定,所以MyISAM可以很容易的从表的开始位置找到某一字节的位置。
据些建立的primary key的索引结构大致如下:
MySQL索引类型及优化

注:MyISAM不支持聚簇索引,索引中每一个叶子节点仅仅包含行号(row number),且叶子节点按照col1的顺序存储。
来看看col2的索引结构:
MySQL索引类型及优化

实际上,在MyISAM中,primary key和其它索引没有什么区别。Primary key仅仅只是一个叫做PRIMARY的唯一,非空的索引而已。

(2) InnoDB的数据布局
InnoDB按聚簇索引的形式存储数据,所以它的数据布局有着很大的不同。它存储表的结构大致如下:
MySQL索引类型及优化

注:聚簇索引中的每个叶子节点包含primary key的值,事务ID和回滚指针(rollback pointer)——用于事务和MVCC,和余下的列(如col2)。

相 对于MyISAM,二级索引与聚簇索引有很大的不同。InnoDB的二级索引的叶子包含primary key的值,而不是行指针(row pointers),这减小了移动数据或者数据页面分裂时维护二级索引的开销,因为InnoDB不需要更新索引的行指针。

上一篇:vue优化(1) vue-cli3/4 【图片压缩 】||【文件分块】


下一篇:关于vue-cli3打包优化