张量Tensor、图Graph、操作Operation、会话Session
张量Tensor是TensorFlow的基本数据结构。张量在概念上等同于多维数组,Tensorflow的张量和numpy中的array很类似。从行为特性来看,有两种类型的张量,常量constant张量和变量Variable张量。.
接下来看这张图:
如图所示,张量[5, 3]进入节点a,分别流向了节点b、c进行prod和sum两个操作,结果15和8又同时流入节点d进行add操作,最后输出结果23。由此发现,图Graph实际上是一个由数据流图表示的计算过程,即张量Tensor在图Graph中的流动过程。而每一个节点便对应一个操作Operation。
包括生成张量Tensor在内,上图包括abcd四个操作,代码表示为:
import tensorflow as tf
a = tf.constant([5, 3], name='input_a')
b = tf.reduce_prod(a, name='prod_b')
c = tf.reduce_sum(a, name='sum_c')
d = tf.add(b, c, name='add_d')
再提一下会话Session,其作用是分配CPU或GPU资源来运行一张图Graph。一个会话Session的目的简单来说就是操作Operation的执行和张量Tensor的计算。
需要注意的是,TensorFlow2.0版本后已经取消了Session模块,并且不需要新建图Graph再新建会话Session来运行,便可以像普通Python代码一样运行 。这种模式便是“动态图模式”,即所谓的Eager Excution。
模型Model与层Layer
层Layer将各种计算流程和变量进行了封装(例如基本的全连接层,CNN 的卷积层、池化层等),而模型Model则将各种层进行组织和连接,并封装成一个整体,描述了如何将输入数据通过各种层以及运算而得到输出。
在 TensorFlow 中,通常使用 Keras( tf.keras )构建模型。Keras 是一个广为流行的高级神经网络 API,简单、快速而不失灵活性,现已得到 TensorFlow 的官方内置和全面支持。
Keras 在 tf.keras.layers
下内置了深度学习中大量常用的的预定义层,同时也允许我们自定义层。
Keras 模型以类的形式呈现,我们可以通过继承 tf.keras.Model
这个 Python 类来定义自己的模型。在继承类中,我们需要重写 init()
(构造函数,初始化)和 call(input)
(模型调用)两个方法,同时也可以根据需要增加自定义的方法。
模型类定义示意图:
代码示意:
class MyModel(tf.keras.Model):
def __init__(self):
super().__init__() # Python 2 下使用 super(MyModel, self).__init__()
# 此处添加初始化代码(包含 call 方法中会用到的层),例如
# layer1 = tf.keras.layers.BuiltInLayer(...)
# layer2 = MyCustomLayer(...)
def call(self, input):
# 此处添加模型调用的代码(处理输入并返回输出),例如
# x = layer1(input)
# output = layer2(x)
return output
# 还可以添加自定义的方法