基于commons-pool2实现KafkaProducer池来提升kafka发送消息性能

业务场景

Spark用fileStream实时从NFS获取一批文件,将文件中JSON结构里面的大小图二进制数据上传云存储获取url然后再将url以string回写到json中发送kafka,最早使用多线程并行发送内个线程创建一个KafkaProducer速度慢的惊人无法满足现场,接着在线程*用一个KafkaProducer再测试发现没有改观。

问题分析

分析kafka日志发现,每次发送数据大部分时间在0-1ms,出现时延的情况时发现都是连续出现的,由于发送端只有一个producer实例,这样当一个message发送阻塞了,将会瞬间导致TPS急剧下降,正常情况下一个kafka实例在1秒内能够处理上千个发送请求(由于我们的消息每个在323970B左右,千兆网用尽上行io差不多也只能发送11710241024/323970 = 378),但出现1秒的时延将会导致1秒只能处理1个发送请求,这样会阻塞后面数据的处理。

问题原因

由于producer是线程安全的,所以采用单实例,但一次发送阻塞(因为使用同步发送,每次发送都会等待结果,这个过程是同步的),将会影响到后续的数据处理,那就只能缓存producer实例了。

实现方案

对象池工厂实现的代码实现

public class KafkaProducerPooledObjectFactory implements PooledObjectFactory<KafkaProducer<String, String>>, Serializable {

    Properties props;
    public KafkaProducerPooledObjectFactory(Properties props) {
        this.props = props;
    }

    @Override
    public PooledObject<KafkaProducer<String, String>> makeObject() throws Exception {
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(props);
        return new DefaultPooledObject<KafkaProducer<String, String>>(kafkaProducer);
    }

    @Override
    public void destroyObject(PooledObject<KafkaProducer<String, String>> p) throws Exception {
        KafkaProducer<String, String> o = p.getObject();
        o = null;
    }

    @Override
    public boolean validateObject(PooledObject<KafkaProducer<String, String>> p) {
        return false;
    }

    @Override
    public void activateObject(PooledObject<KafkaProducer<String, String>> p) throws Exception {
        //System.out.println("activateObject");
    }

    @Override
    public void passivateObject(PooledObject<KafkaProducer<String, String>> p) throws Exception {
        //System.out.println("passivateObject");
    }

}

对象池工对外的代码实现

public class KafkaProducerPool implements Serializable {

    private GenericObjectPool<KafkaProducer<String, String>> objectPool;

    public KafkaProducerPool(Properties props) {

        KafkaProducerPooledObjectFactory kafkaProducerPooledObjectFactory = new KafkaProducerPooledObjectFactory(props);

        GenericObjectPoolConfig config = new GenericObjectPoolConfig(); // 池子配置文件
        config.setMaxTotal(100);                                        // 整个池最大值
        config.setMaxIdle(10);                                          // 最大空闲
        config.setMinIdle(0);                                           // 最小空闲
        config.setMaxWaitMillis(5000);                                  // 最大等待时间,-1表示一直等
        config.setBlockWhenExhausted(true);                             // 当对象池没有空闲对象时,新的获取对象的请求是否阻塞。true阻塞。默认值是true
        config.setTestOnBorrow(false);                                  // 在从对象池获取对象时是否检测对象有效,true是;默认值是false
        config.setTestOnReturn(false);                                  // 在向对象池中归还对象时是否检测对象有效,true是,默认值是false
        config.setTestWhileIdle(false);                                 // 在检测空闲对象线程检测到对象不需要移除时,是否检测对象的有效性。true是,默认值是false
        config.setMinEvictableIdleTimeMillis(60000L);                   // 可发呆的时间,10mins
        config.setTestWhileIdle(true);                                  // 发呆过长移除的时候是否test一下先
        config.setTimeBetweenEvictionRunsMillis(3000);                  // 回收资源线程的执行周期 3s
        config.setNumTestsPerEvictionRun(10);

        objectPool = new GenericObjectPool<>(kafkaProducerPooledObjectFactory, config);
    }

    public static Properties getConfig(String hosts) {
        Properties props = new Properties();
        props.put("bootstrap.servers", hosts);
        // procedure要求leader在考虑完成请求之前收到的确认数,用于控制发送记录在服务端的持久化,其值可以为如下:
        // acks = 0 如果设置为零,则生产者将不会等待来自服务器的任何确认,该记录将立即添加到套接字缓冲区并视为已发送。在这种情况下,无法保证服务器已收到记录,并且重试配置将不会生效(因为客户端通常不会知道任何故障),为每条记录返回的偏移量始终设置为-1。
        // acks = 1 这意味着leader会将记录写入其本地日志,但无需等待所有副本服务器的完全确认即可做出回应,在这种情况下,如果leader在确认记录后立即失败,但在将数据复制到所有的副本服务器之前,则记录将会丢失。
        // acks = all 这意味着leader将等待完整的同步副本集以确认记录,这保证了只要至少一个同步副本服务器仍然存活,记录就不会丢失,这是最强有力的保证,这相当于acks = -1的设置。
        // 可以设置的值为:all, -1, 0, 1
        props.put("acks", "1");
        props.put("retries", 0);
        props.put("batch.size", 10000);
        props.put("linger.ms", 1);
        props.put("buffer.memory", 33554432);
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        return props;
    }

    public KafkaProducer<String, String> getProducer() {
        try {
            KafkaProducer<String, String> producer = objectPool.borrowObject();
            return producer;
        } catch (Exception e) {
            throw new RuntimeException("获取KafkaProducer连接异常", e);
        }
    }

    public void returnProducer(KafkaProducer<String, String> producer) {
        try {
            objectPool.returnObject(producer);// 将对象放回对象池
        } catch (Exception e) {
            throw new RuntimeException("释放KafkaProducer连接异常", e);
        }
    }


    public static void main(String[] args) {
        String topic = "TEST_1";
        String hosts = "hdh109:9092";
        Properties props = getConfig(hosts);

        KafkaProducerPool pool = new KafkaProducerPool(props);
        for (int i = 0; i < 10000; i++) {
            KafkaProducer<String, String> producer = pool.getProducer();
            pool.returnProducer(producer);
        }
    }
}

调用代码片段1

val pool = new KafkaProducerPool(KafkaProducerPool.getConfig(hosts))
val executors:ExecutorService = Executors.newFixedThreadPool(40)
while (i.hasNext) {
    val item = i.next().toString
    val exec = new Exec(ACCESS_KEY, SECRET_KEY, gateHost, gatePort, serialId, poolId, token, topic, hosts, item, pool)
    val future = executors.submit(exec)
    future.get()
}
executors.shutdown()

Exec中的代码片段2

public class Exec implements Runnable {

    String msg;
    String topic, hosts;
    KafkaProducerPool pool;

    public Exec(String topic, String hosts, String msg, KafkaProducerPool pool) {

        this.msg = msg;

        this.topic = topic;
        this.hosts = hosts;
        this.pool = pool;
    }

    public Exec(String topic, String hosts, String msg, KafkaProducerExample prod) {
        this.msg = msg;

        this.topic = topic;
        this.hosts = hosts;
        this.prod = prod;
    }

    @Override
    public void run() {

            //省略一些消息处理相关代码

            KafkaProducer<String, String> producer = pool.getProducer();
            ProducerRecord rec = new ProducerRecord<>(topic, UUID.randomUUID().toString(), jo.toJSONString());
            producer.send(rec);
            pool.returnProducer(producer);

        } catch (IOException exec) {
            exec.printStackTrace();
        }

    }
}
上一篇:PHP处理图片(orientation)旋转问题


下一篇:大数据项目缘何失败?分析模型需要与业务相结合