目录
Keras != tf.keras
-
Keras是一个框架
-
datasets
-
layers
-
losses
-
metrics
-
optimizers
Outline1
-
Metrics
-
update_state
-
result().numpy()
-
reset_states
Metrics
Step1.Build a meter
acc_meter = metrics.Accuarcy()
loss_meter = metrics.Mean
Step2.Update data
loss_meter.update_state(loss)
acc_meter.update_state(y,pred)
Step3.Get Average data
print(step, ‘loss:‘, loss_meter.result().numpy())
# ...
print(step,‘Evaluate Acc:‘, total_correct/total, acc_meter.result().numpy()
Clear buffer
if step % 100 == 0:
print(step, ‘loss:‘, loss_meter.result().numpy())
loss_meter.reset_states()
# ...
if step % 500 == 0:
total, total_correct = 0., 0
acc_meter.reset_states()
Outline2
-
Compile
-
Fit
-
Evaluate
-
Predict
Compile + Fit
Individual loss and optimize1
with tf.GradientTape() as tape:
x = tf.reshape(x, (-1, 28*28))
out = network(x)
y_onehot = tf.one_hot(y, depth=10)
loss = tf.reduce_mean(tf.losses.categorical_crossentropy(y_onehot, out, from_logits=True))
grads = tape.gradient(loss, network.trainable_variables)
optimizer.apply_gradients(zip(grads, network.trainable_variables))
Now1
network.compile(optimizer=optimizers.Adam(lr=0.01),
loss=tf.losses.CategoricalCrossentropy(fromlogits=True),
metircs=[‘accuracy‘])
Individual epoch and step2
for epoch in range(epochs):
for step, (x, y) in enumerate(db):
# ...
Now2
network.compile(optimizer=optimizers.Adam(lr=0.01),
loss=tf.losses.CategoricalCrossentropy(fromlogits=True),
metircs=[‘accuracy‘])
network.fit(db, epochs=10)
Standard Progressbar
Individual evaluation3
if step % 500 == 0:
total, total_correct = 0., 0
<span class="hljs-keyword">for</span> step, (x, y) <span class="hljs-keyword">in</span> <span class="hljs-built_in">enumerate</span>(ds_val):
x = tf.reshape(x, (<span class="hljs-number">-1</span>, <span class="hljs-number">28</span>*<span class="hljs-number">28</span>))
out = network(x)
pred = tf.argmax(out, axis=<span class="hljs-number">1</span>)
pred = tf.cast(pred, dtype=tf.int32)
correct = tf.equal(pred, y)
total_correct += tf.reduce_sum(tf.cast(correct, dtype=tf.int32)).numpy()
total += x.shape[<span class="hljs-number">0</span>]
print(step, <span class="hljs-string">‘Evaluate Acc:‘</span>, total_correct/total)
Now3
network.compile(optimizer=optimizers.Adam(lr=0.01),
loss=tf.losses.CategoricalCrossentropy(fromlogits=True),
metircs=[‘accuracy‘])
# validation_freq=2表示2个epochs做一次验证
network.fit(db, epochs=10, validation_data=ds_val, validation_freq=2)
Evaluation
Test
network.compile(optimizer=optimizers.Adam(lr=0.01),
loss=tf.losses.CategoricalCrossentropy(fromlogits=True),
metircs=[‘accuracy‘])
# validation_freq=2表示2个epochs做一次验证
network.fit(db, epochs=10, validation_data=ds_val, validation_freq=2)
network.evaluate(ds_val)
Predict
sample = next(iter(ds_val))
x = sample[0]
y = sample[1]
pred = network.predict(x)
y = tf.argmax(y, axis=1)
pred = tf.argmax(pre, axis=1)
print(pred)
print(y)