【ybtoj】【矩阵快速幂】公式推导

题意

【ybtoj】【矩阵快速幂】公式推导

题解

被思维定式坑了...
一开始想的都是怎么用矩阵转移。

  • 等差数列很好转移,矩阵里一个 \(1\) 一个 \(d\) 即可。
  • 组合数不好转移,只能想到 \(C_n^m=C_n^{m-1} \times \frac{n-m+1}{m}\) ,然而由于 \(m\) 是不断变化的,而且矩阵不好维护除法的形式,思考无果。
    实际上是快速幂的纯数学推导...
    由于 \(C_n^k=C_n^{n-k}\) ,且这两项的 \(a\) 值和正好是 \(2s+nd\) ,所以可以把 \(a\) 对应的系数提出来,变成\(\frac{1}{2}(2s+nd) \sum \limits_{i=0}^n C_n^i\) ,根据二项式定理可得\(\sum \limits_{i=0}^n C_n^i=2^n\) ,那么原式就变成了\((2s+nd)\times 2^n\) ,直接快速幂求出即可。

代码

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int INF = 0x3f3f3f3f,mod = 998244353;
inline ll read()
{
	ll ret=0;char ch=' ',c=getchar();
	while(!(c>='0'&&c<='9')) ch=c,c=getchar();
	while(c>='0'&&c<='9') ret=(ret<<1)+(ret<<3)+c-'0',c=getchar();
	return ch=='-'?-ret:ret;
}
ll qpow(ll x,ll y)
{
	ll ret=1;
	while(y)
	{
		if(y&1) ret=ret*x%mod;
		x=x*x%mod;
		y>>=1;
	}
	return ret;
}
ll n,s,d;
int main()
{
	n=read(),s=read(),d=read();
	d%=mod,s%=mod;
	ll ans=((s<<1)+n%mod*d%mod)%mod;
	ans=(ans*qpow(2,n-1))%mod;
	printf("%lld",ans);
	return 0;
}
上一篇:多层感知机从零开始实现


下一篇:Java程序员学深度学习 DJL上手4 NDArray基本操作