文章目录
一、题目
1、题目描述
输入整数数组 arr ,找出其中最小的 k 个数。例如,输入4、5、1、6、2、7、3、8这8个数字,则最小的4个数字是1、2、3、4。
样例输入:arr = [3,2,1], k = 2
样例输出:[1,2]
2、基础框架
- C语言 版本给出的基础框架代码如下:
int* getLeastNumbers(int* arr, int arrSize, int k, int* returnSize){}
3、原题链接
二、解题报告
1、思路分析
一个可以用来练习堆操作的模板题。将所有数字塞入一个小顶堆中,然后弹出其中 k k k 个即可。
2、时间复杂度
将所有元素塞入堆的过程就是最坏时间复杂度,为 O ( n l o g 2 n ) O(nlog_2n) O(nlog2n)。
3、代码详解
/**********************************小顶堆模板************************************/
#define lson(idx) (idx << 1|1)
#define rson(idx) ((idx + 1) << 1)
#define parent(idx) ((idx - 1) >> 1)
#define root 0
typedef struct {
int key;
}DataType;
// -1 和 1 交换,就变成了大顶堆
int compareData(const DataType* a, const DataType* b) {
if(a->key < b->key) {
return -1;
}else if(a->key > b->key) {
return 1;
}
return 0;
}
void swap(DataType* a, DataType* b) {
DataType tmp = *a;
*a = *b;
*b = tmp;
}
typedef struct {
DataType *data;
int size;
int capacity;
}Heap;
// 内部接口,小写驼峰
// heapShiftDown 这个接口是一个内部接口,所以用小写驼峰区分,用于对堆中元素进行删除的时候的下沉调整;
void heapShiftDown(Heap* heap, int curr) {
int son = lson(curr);
while(son < heap->size) {
if( rson(curr) < heap->size ) {
if( compareData( &heap->data[rson(curr)], &heap->data[son] ) < 0 ) {
son = rson(curr); // 始终选择值更小的结点
}
}
if( compareData( &heap->data[son], &heap->data[curr] ) < 0 ) {
swap(&heap->data[son], &heap->data[curr]); // 子结点的值小于父结点,则执行交换;
curr = son;
son = lson(curr);
}else {
break; // 子结点的值大于父结点,说明已经正确归位,下沉操作结束,跳出循环;
}
}
}
// heapShiftUp 这个接口是一个内部接口,所以用小写驼峰区分,用于对堆中元素进行插入的时候的上浮调整;
void heapShiftUp(Heap* heap, int curr) {
int par = parent(curr);
while(par >= root) {
if( compareData( &heap->data[curr], &heap->data[par] ) < 0 ) {
swap(&heap->data[curr], &heap->data[par]); // 子结点的值小于父结点,则执行交换;
curr = par;
par = parent(curr);
}else {
break; // 子结点的值大于父结点,说明已经正确归位,上浮操作结束,跳出循环;
}
}
}
bool heapIsFull(Heap *heap) {
return heap->size == heap->capacity;
}
// 外部接口,大写驼峰
// 堆的判空
bool HeapIsEmpty(Heap *heap) {
return heap->size == 0;
}
// 堆的插入
// 插到最后一个位置,然后不断进行上浮操作
bool HeapPush(Heap* heap, DataType data) {
if( heapIsFull(heap) ) {
return false;
}
heap->data[ heap->size++ ] = data;
heapShiftUp(heap, heap->size-1);
return true;
}
// 堆的删除
// 1、删除堆顶元素时,将堆底部的下标最大的元素放入对顶;
// 2、然后调用 shiftDown 将这个元素进行下沉操作;
// 对于小顶堆来说,从根到叶子的路径必然是单调不降的,所以下沉操作一定会终止在路径的某个点,并且保证所有的堆路径还是能够维持单调不降;
bool HeapPop(Heap *heap) {
if(HeapIsEmpty(heap)) {
return false;
}
heap->data[root] = heap->data[ --heap->size ];
heapShiftDown(heap, root);
return true;
}
DataType HeapTop(Heap *heap) {
assert(!HeapIsEmpty(heap));
return heap->data[root];
}
// 创建堆
Heap* HeapCreate(DataType *data, int dataSize, int maxSize) {
int i;
Heap *h = (Heap *)malloc( sizeof(Heap) );
h->data = (DataType *)malloc( sizeof(DataType) * maxSize );
h->size = 0;
h->capacity = maxSize;
for(i = 0; i < dataSize; ++i) {
HeapPush(h, data[i]);
}
return h;
}
// 销毁堆
void HeapFree(Heap *heap) {
free(heap->data);
free(heap);
}
/**********************************小顶堆模板************************************/
DataType d[10001];
int* getLeastNumbers(int* arr, int arrSize, int k, int* returnSize){
int i;
Heap *h;
for(i = 0; i < arrSize; ++i) {
d[i].key = arr[i]; // (1)
}
h = HeapCreate(d, arrSize, arrSize); // (2)
*returnSize = 0;
while(k--) {
arr[ (*returnSize)++ ] = HeapTop(h).key; // (3)
HeapPop(h); // (4)
}
HeapFree(h); // (5)
return arr;
}
- ( 1 ) (1) (1) 组织成堆的数据结构;
- ( 2 ) (2) (2) 初始化小顶堆;
- ( 3 ) (3) (3) 取堆顶元素;
- ( 4 ) (4) (4) 弹出对顶;
- ( 5 ) (5) (5) 将堆销毁;
三、本题小知识
堆 可以用来实现 优先队列。
四、加群须知
相信看我文章的大多数都是「 大学生 」,能上大学的都是「 精英 」,那么我们自然要「 精益求精 」,如果你还是「 大一 」,那么太好了,你拥有大把时间,当然你可以选择「 刷剧 」,然而,「 学好算法 」,三年后的你自然「 不能同日而语 」。
那么这里,我整理了「 几十个基础算法 」 的分类,点击开启: