已知 f: G → G' 是一个同态映射,e' 是 G' 的单位元,Ker f = {a ∈ G | f(a) = e'}. 则 Ker f 是 G 的正规子群.
证明:由同态映射定义知
f(a) = f(e·a) = f(e)·f(a),f(a) = f(a·e) = f(a)·f(e)
即有
f(a) = f(e)·f(a) = f(a)·f(e),即 f(e) = e',e ∈ Ker f
对任意的 h1 ∈ Ker f,h2 ∈ Ker f,f(h1·h2) = f(h1)·f(h2) = e'·e' = e',于是 h1·h2 ∈ Ker f
对任意的 a ∈ G,有
e' = f(e) = f(a·a-1) = f(a)·f(a-1)
e' = f(e) = f(a-1·a) = f(a-1)·f(a)
即有 f(a-1) = (f(a))-1
对任意的 h ∈ Ker f,则有 f(h-1) = (f(h))-1 = (e')-1 = e',于是 h-1 ∈ Ker f
综上,Ker f 是 G 的子群.
以下进一步证明 Ker f 是 G 的正规子群. 记 Ker f = H.
考虑任意的 a ∈ G,h ∈ H,a·h ∈ aH,h·a ∈ Ha
由 f(a-1·h·a) = f(a-1·h)·f(a) = f(a-1)·f(h)·f(a) = (f(a))-1·e'·f(a) = e',有
a-1·h·a ∈ H
于是 a·(a-1·h·a) ∈ aH,即 a·(a-1·h·a) = a·(a-1·(h·a)) = a·a-1·(h·a) = h·a ∈ aH
同样,由 f(a·h·a-1) = f(a·h)·f(a-1) = f(a)·f(h)·f(a-1) = f(a)·e'·(f(a))-1 = e',有
a·h·a-1 ∈ H
于是 (a·h·a-1)·a ∈ Ha,即 (a·h·a-1)·a = (a·h)·(a-1·a) = a·h ∈ Ha
综上即有 aH = Ha,所以 H = Ker f 是 G 的正规子群.