本文不涉及实战操作,仅限集群原理范围探讨,基于版本7.6.X。
作者介绍
李猛,Elastic Stack 深度用户,通过 Elastic 工程师认证,2012年接触 Elasticsearch,对 Elastic Stack 技术栈开发、架构、运维等方面有深入体验,实践过多种大中型项目;为企业提供 Elastic Stack 咨询培训以及调优实施;多年实战经验,爱捣腾各种技术产品,擅长大数据,机器学习,系统架构。
集群模式
Elasticsearch节点设计支持多种角色,这个是实现集群最重要的前提,节点角色各司其职,也可以任意组合,职责重合。
节点角色说明:
• Master,集群管理
• Voting,投票选举节点
• Data,数据节点
• Ingest,数据编辑节点
• Coordinate,协调节点
• Machine Learning,集群学习节点
以下展开各种集群模式
1.单节点(入门)
单节点模式默认开启所有节点特性,具备一个集群所有节点角色,可以认为是一个进程内部的集群。Elasticsearch在默认情况下,不用任何牌配置也可以运行,这也是它设计的精妙之处,相比其它很多数据产品集群配置,如Mongodb,简化了很多,起步入门容易。
2.基本高可用(初级)
Elasticsearch集群要达到基本高可用,一般要至少启动3个节点,3个节点互相连接,单个节点包括所有角色,其中任意节点停机集群依然可用。为什么要至少3个节点?因为集群选举算法奇数法则。
3.数据与管理分离(中级)
Elasticserach管理节点职责是管理集群元数据、索引信息、节点信息等,自身不设计数据存储与查询,资源消耗低;相反数据节点是集群存储与查询的执行节点。
管理节点与数据节点分离,各司其职,任意数据节点故障或者全部数据节点故障,集群仍可用;管理节点一般至少启动3个,任意节点停机,集群仍正常运行。
4.数据与协调分离(高级)
Elasticsearch内部执行查询或者更新操作时,需要路由,默认所有节点都具备此职能,特别是大的查询时,协调节点需要分发查询命令到各个数据节点,查询后的数据需要在协调节点合并排序,这样原有数据节点代价很大,所以分离职责,详细技术原理可以观看腾讯课堂《Elastic技术原理:数据查询》,里面讲解了Elastic执行查询的过程。
5.协调读写分离(高级)
Elasticsearch设置读写分离指的是在协调节点上,不是数据节点上,集群大量的查询需要消耗协调节点很大的内存与CPU合并结果,同时集群大量的数据写入会阻塞协调节点,所以在协调节点上做读写分离很少必要,也很简单,由集群设计搭建时规划好即可。
6.数据节点标签(高级)
Elasticsearch给数据节点标签,目的是分离索引数据的分布,在一个集群规模中等以上,索引数据用途多种多样,对于数据节点的资源需求不一样,数据节点的配置可以差异化,有的数据节点配置高做实时数据查询,有的数据节点配置低做历史数据查询,有的数据节点做专门做索引重建。
Elasticsearch集群部署时需要考虑基础硬件条件,集群规模越来越大,需要多个数据中心,多个网络服务、多个服务器机架,多个交换机等组成,索引数据的分布与这些基础硬件条件都密切相关。
7.主副分片分离(高级)
Elasticsearch集群规模大了之后得考虑集群容灾,若某个机房出现故障,则可以迅速切换到另外的容灾机房。
8.跨集群操作(高级)
Elasticsearch单个集群规模不能无限增长,理论上可以,实际很危险,通过创建多个分集群分解,集群直接建立直接连接,客户端可以通过一个代理集群访问任意集群,包括代理集群本身数据。
Elasticsearch集群支持异地容灾,采用的是跨集群复制的机制,与同一集群主分片副本分片分离是不同的概念,2个集群完全是独立部署运行,仅数据同步复制。
9.跨集群版本操作(高级)
Elasticsearch版本更新很快,已知问题修复很快,新特性新功能推出很快,一日不学,如隔三秋。有的集群数据重要性很高,稳定第一,不能随意升级,有的业务场景刚好需要最新版本新功能新特性支持。
结语
经验总结
Elasticsearch集群模式种类挺多,每种集群模式都有它的应用场景以及解决实际的问题,每种集群模式之间也可以轻易转换。所以说ES玩的好,下班下得早。
声明:本文由原文作者“李猛”授权转载,对未经许可擅自使用者,保留追究其法律责任的权利。
【阿里云Elastic Stack】100%兼容开源ES,独有9大能力,提供免费X-pack服务(单节点价值$6000)
相关活动
更多折扣活动,请访问阿里云 Elasticsearch 官网
阿里云 Elasticsearch 商业通用版,1核2G ,SSD 20G首月免费
阿里云 Logstash 2核4G首月免费