Machine learning (8-Neural Networks: Representation)

1、Non-linear Hypotheses

  • Machine learning (8-Neural Networks: Representation)
  • Machine learning (8-Neural Networks: Representation)

2、Neurons and the Brain

  • Machine learning (8-Neural Networks: Representation)
  • 从某种意义上来说,如果我们能找出大脑的学习算法,然后在计算机上执行大脑学习算法或与之相似的算法,也许这将是我们向人工智能迈进做出的最好的尝试。人工智能的梦想就是:有一天能制造出真正的智能机器。

3、Model Representation I

  • Machine learning (8-Neural Networks: Representation)
  • Machine learning (8-Neural Networks: Representation)
  • 第一层成为输入层(Input Layer),最后一 层称为输出层(Output Layer),中间一层成为隐藏层(Hidden Layers)。我们为每一层都增加一个偏差单位(bias unit)
  • Machine learning (8-Neural Networks: Representation)
  • Machine learning (8-Neural Networks: Representation)

4、 Model Representation II

  • Machine learning (8-Neural Networks: Representation)
  • Machine learning (8-Neural Networks: Representation)
  • Machine learning (8-Neural Networks: Representation)
  • Machine learning (8-Neural Networks: Representation)

5、Examples and Intuitions I

  • 在神经网络中,原始特征只是输入层, 在我们上面三层的神经网络例子中,第三层也就是输出层做出的预测利用的是第二层的特 征,而非输入层中的原始特征,我们可以认为第二层中的特征是神经网络通过学习后自己得出的一系列用于预测输出变量的新特征。
  • Machine learning (8-Neural Networks: Representation)
  • Machine learning (8-Neural Networks: Representation)
  • Machine learning (8-Neural Networks: Representation)
  • Machine learning (8-Neural Networks: Representation)

6、Examples and Intuitions II

  • Machine learning (8-Neural Networks: Representation)
  • Machine learning (8-Neural Networks: Representation)
  • Machine learning (8-Neural Networks: Representation)

7、Multi-class Classification

  • Machine learning (8-Neural Networks: Representation)
  • Machine learning (8-Neural Networks: Representation)

Machine learning (8-Neural Networks: Representation)

上一篇:.NET Core/.NET5/.NET6 开源项目汇总4:CMS、Blog项目


下一篇:通过堡垒机上传文件报错ssh:没有权限的问题