FLINK-connectors-写入ES6

1.pom.xml

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-elasticsearch6_2.11</artifactId>
    <version>${flink.version}</version>
</dependency>

2.详细代码

import java.util
import java.util.Properties

import com.google.gson.Gson
import org.apache.flink.api.common.functions.RuntimeContext
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.connectors.elasticsearch.{ElasticsearchSinkFunction, RequestIndexer}
import org.apache.flink.streaming.connectors.elasticsearch7.{ElasticsearchSink, RestClientFactory}
import org.apache.flink.streaming.util.serialization.SimpleStringSchema
import org.apache.http.HttpHost
import org.apache.http.auth.{AuthScope, UsernamePasswordCredentials}
import org.apache.http.impl.client.BasicCredentialsProvider
import org.apache.http.impl.nio.client.HttpAsyncClientBuilder
import org.elasticsearch.action.index.IndexRequest
import org.elasticsearch.client.RestClientBuilder.HttpClientConfigCallback
import org.elasticsearch.client.{Requests, RestClientBuilder}

object FLink_Kafka_ES {
  def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    // 非常关键,一定要设置启动检查点!!
    env.enableCheckpointing(1000)

    //设置kafka topic
    val topic: String = "test"
    //配置kafka参数
    val props: Properties = new Properties
    props.setProperty("bootstrap.servers", "hadoop01:9092,hadoop02:9092,hadoop03:9092")
    props.setProperty("group.id", "test01")
    props.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
    props.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
    
    //导入隐式转换
    import org.apache.flink.streaming.connectors.kafka._
    import org.apache.flink.api.scala._
    import scala.collection.JavaConverters._

    val consumer: FlinkKafkaConsumer011[String] = new FlinkKafkaConsumer011[String](topic, new SimpleStringSchema(), props)
    //设置最新的数据进行消费
    consumer.setStartFromLatest()
    //构建数据源
    val kafkaSource: DataStream[String] = env.addSource(consumer)
    //进行转换
    val mapDS: DataStream[Map[String, AnyRef]] = kafkaSource.map(x => {
        //创建Gson解析对象, 把json转化成map
      (new Gson).fromJson(x, classOf[util.Map[String, AnyRef]]).asScala.toMap
    })

    //配置ES节点信息
    val httpHosts = new java.util.ArrayList[HttpHost]
    httpHosts.add(new HttpHost("10.11.159.106", 9204, "http"))
    //构建es sink
    val esSinkBuilder = new ElasticsearchSink.Builder[Map[String, AnyRef]](
      httpHosts,
      new ElasticsearchSinkFunction[Map[String, AnyRef]] {
        override def process(t: Map[String, AnyRef], runtimeContext: RuntimeContext, requestIndexer: RequestIndexer): Unit = {
          val map: util.Map[String, AnyRef] = t.asJava
          val indexRequest: IndexRequest = Requests
            .indexRequest()
            .index("flink_kafka")
            //.`type`("kafka_data") //非必选项ES 7.x中不需要再设置文档
            //.id(user_id) //设置文档id为插入数据的某个字段值
            //.create(false) //是否自动创建索引,不推荐使用,最好提前在es中进行Mapping映射,当然如果你的时间字段能够被ES自动识别可以让它自动创建
            //因为ES命名的问题,无法直接使用ES的命名
            //如需使用 x.x 命名格式, 可以考虑嵌套map或者json
            //如使用嵌套map需注意把所有的 map 都需要转化成 java.util.map 否则会爆类型异常
            .source(map)
          //发送请求,写入数据
          requestIndexer.add(indexRequest)
          //写入数据成功输出一下
          println("data saved successfully")
        }
      })
    
    //设置es sink 的参数
    esSinkBuilder.setRestClientFactory(
      new RestClientFactory {
        override def configureRestClientBuilder(restClientBuilder: RestClientBuilder): Unit = {
          restClientBuilder.setHttpClientConfigCallback(new HttpClientConfigCallback {
            override def customizeHttpClient(httpClientBuilder: HttpAsyncClientBuilder): HttpAsyncClientBuilder = {
              val provider: BasicCredentialsProvider = new BasicCredentialsProvider()
              //设置用户名和密码
              val credentials: UsernamePasswordCredentials = new UsernamePasswordCredentials("elastic", "123456") //根据实际情况改变用户名和密码值,如果不需要用户名密码,字段可设为空字符串“”
              provider.setCredentials(AuthScope.ANY, credentials)
              httpClientBuilder.setDefaultCredentialsProvider(provider)
            }
          })
        }
      })
    //设置最大并行度,来一条请求处理一条
    esSinkBuilder.setBulkFlushMaxActions(1)
    //进行重试的时间间隔。对于指数型则表示起始的基数
    //esSink.setBulkFlushBackoffDelay(1)
    //失败重试的次数
    esSink.setBulkFlushBackoffRetries(3)
    //重试策略,又可以分为以下两种类型
    //a、指数型,表示多次重试之间的时间间隔按照指数方式进行增长。eg:2 -> 4 -> 8 ...
    //b、常数型,表示多次重试之间的时间间隔为固定常数。eg:2 -> 2 -> 2 ...
    esSink.setBulkFlushBackoffType(ElasticsearchSinkBase.FlushBackoffType.EXPONENTIAL)
    //设置批量提交时间间隔
    //esSink.setBulkFlushInterval(100)
    //设置批量提交的最大字节 以MB为单位
    //esSink.setBulkFlushMaxSizeMb(16)

    //es 容错处理
    esSink.setFailureHandler(
      new ActionRequestFailureHandler {
        override def onFailure(actionRequest: ActionRequest, throwable: Throwable, i: Int, requestIndexer: RequestIndexer): Unit = {
          if (ExceptionUtils.findThrowable(throwable, classOf[EsRejectedExecutionException]).isPresent) {
            // ES队列满了,放回队列
            requestIndexer.add(actionRequest)
          } else if (ExceptionUtils.findThrowable(throwable, classOf[SocketTimeoutException]).isPresent) {
            // ES超时异常,放回队列
            requestIndexer.add(actionRequest)
          } else {
            // 其它异常,丢弃数据,记录日志
            println(s"Sink to es exception ,exceptionData: "+actionRequest.toString+" exceptionStackTrace: " + org.apache.commons.lang.exception.ExceptionUtils.getFullStackTrace(throwable))
            throw throwable
          }
        }
      }
    )
  
    //设置最大并行度
    mapDS.setMaxParallelism(1)
    //把数据sink到es
    mapDS.addSink(esSinkBuilder.build())

    env.execute("Kafka_Flink")

    //生产数据命令如下
    // $KAFKA_HOME/bin/kafka-console-producer.sh --broker-list hadoop01:9092,hadoop02:9092,hadoop03:9092 --topic test
    //kafka中输入的测试数据
    // {"id":1,"completed":false,"title":"delectus aut autem","userId":1}
    
    //查看索引
    //Get _cat/indices
    //查看索引中的内容
    //Get flink_kafka/_search
    //批量请求的配置;这将指示接收器在每个元素之后发出请求,否则将对它们进行缓冲。
    
  }
}
参考原文链接:https://blog.csdn.net/hongchenshijie/article/details/109704636
上一篇:kafka connect rest api


下一篇:Qualcomm checksparse和ptool工具的使用小结