pytorch with Automatic Mixed Precision(AMP)

PyTorch 源码解读之 torch.cuda.amp: 自动混合精度详解 - 知乎

Automatic Mixed Precision examples — PyTorch 1.9.1 documentation

torch.cuda.amp 提供了较为方便的混合精度训练机制:

  1. 用户不需要手动对模型参数 dtype 转换,amp 会自动为算子选择合适的数值精度

  2. 对于反向传播的时候,FP16 的梯度数值溢出的问题,amp 提供了梯度 scaling 操作,而且在优化器更新参数前,会自动对梯度 unscaling,所以,对用于模型优化的超参数不会有任何影响

以上两点,分别是通过使用amp.autocastamp.GradScaler来实现的。

basic

# Creates model and optimizer in default precision
model = Net().cuda()
optimizer = optim.SGD(model.parameters(), ...)

# Creates a GradScaler once at the beginning of training.
scaler = GradScaler()

for epoch in epochs:
    for input, target in data:
        optimizer.zero_grad()

        # Runs the forward pass with autocasting.
        with autocast():
            output = model(input)
            loss = loss_fn(output, target)

        # Scales loss.  Calls backward() on scaled loss to create scaled gradients.
        # Backward passes under autocast are not recommended.
        # Backward ops run in the same dtype autocast chose for corresponding forward ops.
        scaler.scale(loss).backward()

        # scaler.step() first unscales the gradients of the optimizer's assigned params.
        # If these gradients do not contain infs or NaNs, optimizer.step() is then called,
        # otherwise, optimizer.step() is skipped.
        scaler.step(optimizer)

        # Updates the scale for next iteration.
        scaler.update()
    

gradient clipping

scaler = GradScaler()
​
for epoch in epochs:
    for input, target in data:
        optimizer.zero_grad()
        with autocast():
            output = model(input)
            loss = loss_fn(output, target)
        scaler.scale(loss).backward()
​
        # Unscales the gradients of optimizer's assigned params in-place
        scaler.unscale_(optimizer)
​
        # Since the gradients of optimizer's assigned params are unscaled, clips as usual:
        torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
​
        # optimizer's gradients are already unscaled, so scaler.step does not unscale them,
        # although it still skips optimizer.step() if the gradients contain infs or NaNs.
        scaler.step(optimizer)
​
        # Updates the scale for next iteration.
        scaler.update()

gradient accumulation

scaler = GradScaler()
​
for epoch in epochs:
    for i, (input, target) in enumerate(data):
        with autocast():
            output = model(input)
            loss = loss_fn(output, target)
            loss = loss / accumulate_steps
​
        # Accumulates scaled gradients.
        scaler.scale(loss).backward()
​
        if i % accumulate_steps == 0:
            # may unscale_ here if desired (e.g., to allow clipping unscaled gradients)
            # unscale 梯度,可以不影响clip的threshold
            scaler.unscale_(optimizer)
            # clip梯度
            torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
            
            scaler.step(optimizer)
            scaler.update()
            optimizer.zero_grad()

AMP in DDP

autocast 设计为 “thread local” 的,所以只在 main thread 上设 autocast 区域是不 work 的,所以,还需要对model的forward进行修饰:

MyModel(nn.Module):
    ...
    @autocast()
    def forward(self, input):
       ...

或者在forward中设置autocast区域:

MyModel(nn.Module):
    ...
    def forward(self, input):
        with autocast():
            ...

第一种在使用DDP时出错了(显示forward的某些参数没有正常获取到,未解决……)

上一篇:pytorch线性回归函数解惑


下一篇:optimizer_trace详解