0、使用官方例子,将MapReduce提交到YARN上运行
1、进入文件夹
[hadoop@hadoop000 mapreduce]$ pwd
/home/hadoop/app/hadoop-2.6.0-cdh5.15.1/share/hadoop/mapreduce
[hadoop@hadoop000 mapreduce]$ ls
hadoop-mapreduce-client-app-2.6.0-cdh5.15.1.jar
hadoop-mapreduce-client-common-2.6.0-cdh5.15.1.jar
hadoop-mapreduce-client-core-2.6.0-cdh5.15.1.jar
hadoop-mapreduce-client-hs-2.6.0-cdh5.15.1.jar
hadoop-mapreduce-client-hs-plugins-2.6.0-cdh5.15.1.jar
hadoop-mapreduce-client-jobclient-2.6.0-cdh5.15.1.jar
hadoop-mapreduce-client-jobclient-2.6.0-cdh5.15.1-tests.jar
hadoop-mapreduce-client-nativetask-2.6.0-cdh5.15.1.jar
hadoop-mapreduce-client-shuffle-2.6.0-cdh5.15.1.jar
hadoop-mapreduce-examples-2.6.0-cdh5.15.1.jar
2、运行jar包里的类
(1)提示:计算pi值
pi: A map/reduce program that estimates Pi using a quasi-Monte Carlo method.
(2)提示:使用方法
Usage: org.apache.hadoop.examples.QuasiMonteCarlo <nMaps> <nSamples>
(3)运行运行jar包里的类
[hadoop@hadoop000 mapreduce]$ hadoop jar hadoop-mapreduce-examples-2.6.0-cdh5.15.1.jar pi 2 3
(4)刷新浏览器界面All Applications
3、wordcount
(1)找到wordcount
[hadoop@hadoop000 mapreduce]$ hadoop jar hadoop-mapreduce-examples-2.6.0-cdh5.15.1.jar
(2)使用vi重新创建文件
[hadoop@hadoop000 data]$ pwd /home/hadoop/data [hadoop@hadoop000 data]$ vi data.txt hello world welcome Hello hello welcome
(3)在hadoop中多层创建input文件,并传入文件
[hadoop@hadoop000 data]$ hadoop fs -mkdir -p /wc/input
[hadoop@hadoop000 data]$ hadoop fs -put data.txt /wc/input
(4)执行
[hadoop@hadoop000 mapreduce]$ hadoop jar hadoop-mapreduce-examples-2.6.0-cdh5.15.1.jar wordcount /wc/input/data.txt /wc/output
(5)查看结果
没有区分大小写,也不能自动删除重复性文档。
[hadoop@hadoop000 mapreduce]$ hadoop fs -text /wc/output/part-r-00000