有一间长方形的房子,地上铺了红色、黑色两种颜色的正方形瓷砖。
你站在其中一块黑色的瓷砖上,只能向相邻(上下左右四个方向)的黑色瓷砖移动。
请写一个程序,计算你总共能够到达多少块黑色的瓷砖。
输入格式
输入包括多个数据集合。
每个数据集合的第一行是两个整数 W 和 H,分别表示 x 方向和 y 方向瓷砖的数量。
在接下来的 H 行中,每行包括 W 个字符。每个字符表示一块瓷砖的颜色,规则如下
1)‘.’:黑色的瓷砖;
2)‘#’:红色的瓷砖;
3)‘@’:黑色的瓷砖,并且你站在这块瓷砖上。该字符在每个数据集合中唯一出现一次。
当在一行中读入的是两个零时,表示输入结束。
输出格式
对每个数据集合,分别输出一行,显示你从初始位置出发能到达的瓷砖数(记数时包括初始位置的瓷砖)。
数据范围
1≤W,H≤20
输入样例:
6 9
....#.
.....#
......
......
......
......
......
井@...#
.#..#.
0 0
输出样例:
45
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define x first
#define y second
using namespace std;
const int N=25;
typedef pair<int,int> PII;
char g[N][N];
int n,m;
bool st[N][N];//判重数组,表示当前点有没有走过
int bfs(PII start){
queue<PII> q;
memset(st,false,sizeof st);//每次清空数组
st[start.x][start.y]=true;//将当前起点置为走过
q.push(start);//将起点插入对头
int dx[4]={-1,0,1,0};//定义四个方向的偏移量
int dy[4]={0,1,0,-1};
while(q.size()){//当队列中还有元素
auto t=q.front();//用一个变量存队头元素
q.pop();//将队头元素弹出
for(int i=0;i<4;i++){
int x=t.x+dx[i],y=t.y+dy[i];
if(x<0||x>=n||y<0||y>=m) continue;
if(st[x][y]==true) continue;
if(g[x][y]!='.') continue;
st[x][y]=true;//将走过的点置为true
q.push(make_pair(x,y));//将该点放入队列
}
}
int cnt=0;
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
if(st[i][j])//计算连通块的总数
cnt++;
return cnt;
}
int main(){
while(cin>>m>>n,n||m){
for(int i=0;i<n;i++)
cin>>g[i];
PII start;
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
if(g[i][j]=='@')
{
start.x=i;
start.y=j;
}
cout<<bfs(start)<<endl;
}
return 0;
}