一、Canny边缘提取步骤
文中用python实现canny算子,Canny算子的步骤为:
- 1)图像灰度预处理
- 2)对每个像素求梯度
- 3)求每个点处最大梯度的编码
- 4)非极大值抑制,保证梯度编码的唯一性。
- 5)通过阈值,将边缘像素抽取出来;
二、代码
通过下列代码学习,可以了解canny算子全过程;并按自己的理解进行修改学习:
# !/usr/bin/env python
# -*- coding: utf-8 -*-
import cv2
import matplotlib.pyplot as plt
import numpy as np
import math
# img = plt.imread('d:\\women.png')
img = plt.imread('../image/1104C.jpg')
sigma1 = sigma2 = 1
sum = 0
gaussian = np.zeros([5, 5])
for i in range(5):
for j in range(5):
gaussian[i, j] = math.exp(-1 / 2 * (np.square(i - 3) / np.square(sigma1) # 生成二维高斯分布矩阵
+ (np.square(j - 3) / np.square(sigma2)))) / (2 * math.pi * sigma1 * sigma2)
sum = sum + gaussian[i, j]
gaussian = gaussian / sum
# print(gaussian)
def rgb2gray(rgb):
return np.dot(rgb[..., :3], [0.299, 0.587, 0.114])
# step1.高斯滤波
gray = rgb2gray(img)
W, H = gray.shape
# new_gray = np.zeros([W - 5, H - 5])
# for i in range(W - 5):
# for j in range(H - 5):
# new_gray[i, j] = np.sum(gray[i:i + 5, j:j + 5] * gaussian) # 与高斯矩阵卷积实现滤波
new_gray = cv2.GaussianBlur(gray, (5, 5), 0)
# step2.增强 通过求梯度幅值
W1, H1 = new_gray.shape
dx = np.zeros([W1 - 1, H1 - 1])
dy = np.zeros([W1 - 1, H1 - 1])
d = np.zeros([W1 - 1, H1 - 1])
for i in range(W1 - 1):
for j in range(H1 - 1):
dx[i, j] = new_gray[i, j + 1] - new_gray[i, j]
dy[i, j] = new_gray[i + 1, j] - new_gray[i, j]
d[i, j] = np.sqrt(np.square(dx[i, j]) + np.square(dy[i, j])) # 图像梯度幅值作为图像强度值
# plt.imshow(d, cmap="gray")
# setp3.非极大值抑制 NMS
W2, H2 = d.shape
NMS = np.copy(d)
NMS[0, :] = NMS[W2 - 1, :] = NMS[:, 0] = NMS[:, H2 - 1] = 0
for i in range(1, W2 - 1):
for j in range(1, H2 - 1):
if d[i, j] == 0:
NMS[i, j] = 0
else:
gradX = dx[i, j]
gradY = dy[i, j]
gradTemp = d[i, j]
# 如果Y方向幅度值较大
if np.abs(gradY) > np.abs(gradX):
weight = np.abs(gradX) / np.abs(gradY)
grad2 = d[i - 1, j]
grad4 = d[i + 1, j]
# 如果x,y方向梯度符号相同
if gradX * gradY > 0:
grad1 = d[i - 1, j - 1]
grad3 = d[i + 1, j + 1]
# 如果x,y方向梯度符号相反
else:
grad1 = d[i - 1, j + 1]
grad3 = d[i + 1, j - 1]
# 如果X方向幅度值较大
else:
weight = np.abs(gradY) / np.abs(gradX)
grad2 = d[i, j - 1]
grad4 = d[i, j + 1]
# 如果x,y方向梯度符号相同
if gradX * gradY > 0:
grad1 = d[i + 1, j - 1]
grad3 = d[i - 1, j + 1]
# 如果x,y方向梯度符号相反
else:
grad1 = d[i - 1, j - 1]
grad3 = d[i + 1, j + 1]
gradTemp1 = weight * grad1 + (1 - weight) * grad2
gradTemp2 = weight * grad3 + (1 - weight) * grad4
if gradTemp >= gradTemp1 and gradTemp >= gradTemp2:
NMS[i, j] = gradTemp
else:
NMS[i, j] = 0
# plt.imshow(NMS, cmap = "gray")
# step4. 双阈值算法检测、连接边缘
W3, H3 = NMS.shape
DT = np.zeros([W3, H3])
# 定义高低阈值
TL = 0.31 * np.max(NMS)
TH = 0.4 * np.max(NMS)
for i in range(1, W3 - 1):
for j in range(1, H3 - 1):
if (NMS[i, j] < TL):
DT[i, j] = 0
elif (NMS[i, j] > TH):
DT[i, j] = 255
elif ((NMS[i - 1, j - 1:j + 1] < TH).any() or (NMS[i + 1, j - 1:j + 1]).any()
or (NMS[i, [j - 1, j + 1]] < TH).any()):
DT[i, j] = 255
# newDT = DT.astype(np.uint8)
cv2.imshow( "gray",DT)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite("parts4.jpg",DT)
三、结果展示