[半原创]指纹识别+谷歌图片识别技术之C++代码

原地址:http://blog.csdn.net/guoming0000/article/details/8138223

以前看到一个http://topic.csdn.net/u/20120417/15/edbf86f8-cfec-45c3-93e1-67bd555c684a.html网页,觉得蛮有趣的,方法似乎很简单,早就想用c++实现它,但是搁置很久,今天突然感兴趣实现了下。给一个免费的下载java源代码地址:http://download.csdn.net/detail/yjflinchong/4239243,图片你可以用他们的图片~~

      以下程序中的图片自己随便找。

主题内容摘录:

Google "相似图片搜索":你可以用一张图片,搜索互联网上所有与它相似的图片。
打开Google图片搜索页面:
点击使用上传一张angelababy原图:
点击搜索后,Google将会找出与之相似的图片,图片相似度越高就越排在前面。

这种技术的原理是什么?计算机怎么知道两张图片相似呢?

根据Neal Krawetz博士的解释,实现相似图片搜素的关键技术叫做"感知哈希算法"(Perceptualhash algorithm),它的作用是对每张图片生成一个"指纹"(fingerprint)字符串,然后比较不同图片的指纹。结果越接近,就说明图片越相似。
以下是一个最简单的Java实现:
预处理:读取图片
第一步,缩小尺寸。

  将图片缩小到8x8的尺寸,总共64个像素。这一步的作用是去除图片的细节,只保留结构、明暗等基本信息,摒弃不同尺寸、比例带来的图片差异。
第二步,简化色彩。

  将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。
第三步,计算平均值。
  计算所有64个像素的灰度平均值。
第四步,比较像素的灰度。
  将每个像素的灰度,与平均值进行比较。大于或等于平均值,记为1;小于平均值,记为0。
第五步,计算哈希值。
   将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。组合的次序并不重要,只要保证所有图片都采用同样次序就行了。
  得到指纹以后,就可以对比不同的图片,看看64位中有多少位是不一样的。在理论上,这等同于计算"汉明距离"(Hammingdistance)。如果不相同的数据位不超过5,就说明两张图片很相似;如果大于10,就说明这是两张不同的图片。
  你可以将几张图片放在一起,也计算出他们的汉明距离对比,就可以看看两张图片是否相似。
   这种算法的优点是简单快速,不受图片大小缩放的影响,缺点是图片的内容不能变更。如果在图片上加几个文字,它就认不出来了。所以,它的最佳用途是根据缩略图,找出原图。
    实际应用中,往往采用更强大的pHash算法和SIFT算法,它们能够识别图片的变形。只要变形程度不超过25%,它们就能匹配原图。这些算法虽然更复杂,但是原理与上面的简便算法是一样的,就是先将图片转化成Hash字符串,然后再进行比较。

  用的OpenCV打开图像(貌似没有opencv寸步难行呢,囧)

 

  1. // Win32TestPure.cpp : 定义控制台应用程序的入口点。  
  2.  #include "stdafx.h"  
  3.  //#include <atlstr.h>//CString, CEdit   
  4.  #include "opencv2\opencv.hpp"  
  5.  #include <hash_map>  
  6.  //----------------------------------------------------  
  7.  using namespace std;  
  8.  using namespace cv;  
  9.  class PhotoFingerPrint  
  10.  {  
  11.  public:  
  12.     int     Distance(string &str1,string &str2);  
  13.     string  HashValue(Mat &src);        //主要功能函数  
  14.     void    Insert(Mat &src,string &val);  
  15.     void    Find(Mat &src);  
  16.  private:  
  17.     Mat     m_imgSrc;  
  18.     hash_map<string,string> m_hashMap;  
  19.    
  20.  };  
  21.  string PhotoFingerPrint::HashValue(Mat &src)  
  22.  {  
  23.     string rst(64,‘\0‘);  
  24.     Mat img;  
  25.     if(src.channels()==3)  
  26.         cvtColor(src,img,CV_BGR2GRAY);  
  27.     else  
  28.         img=src.clone();  
  29.     // 第一步,缩小尺寸。  
  30.  /*将图片缩小到8x8的尺寸,总共64个像素。这一步的作用是去除图片的细节, 
  31.  只保留结构、明暗等基本信息,摒弃不同尺寸、比例带来的图片差异。*/  
  32.     resize(img,img,Size(8,8));//缩小尺寸  
  33.     // 第二步,简化色彩。  
  34.     // 将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。  
  35.     uchar *pData;  
  36.     for(int i=0;i<img.rows;i++)  
  37.     {  
  38.         pData = img.ptr<uchar>(i);  
  39.         for(int j=0;j<img.cols;j++)  
  40.         {  
  41.             pData[j]=pData[j]/4;   //0~255--->0~63  
  42.         }  
  43.     }  
  44.     // 第三步,计算平均值。  
  45.     // 计算所有64个像素的灰度平均值。  
  46.     int average = mean(img).val[0];  
  47.     // 第四步,比较像素的灰度。  
  48.     // 将每个像素的灰度,与平均值进行比较。大于或等于平均值,记为1;小于平均值,记为0。  
  49.     Mat mask= (img>=(uchar)average);//////  
  50.     // 第五步,计算哈希值。  
  51.     /* 将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。 
  52.     组合的次序并不重要,只要保证所有图片都采用同样次序就行了。 
  53.     */  
  54.     int index = 0;  
  55.     for(int i=0;i<mask.rows;i++)  
  56.     {  
  57.         pData = mask.ptr<uchar>(i);  
  58.         for(int j=0;j<mask.cols;j++)  
  59.         {  
  60.             if(pData[j]==0)  
  61.                 rst[index++]=‘0‘;  
  62.             else  
  63.                 rst[index++]=‘1‘;  
  64.         }  
  65.     }  
  66.     return rst;  
  67.  }  
  68.  void    PhotoFingerPrint::Insert(Mat &src,string &val)  
  69.  {  
  70.     string strVal = HashValue(src);  
  71.     m_hashMap.insert(pair<string,string>(strVal,val));  
  72.     cout<<"insert one value:"<<strVal<<"   string:"<<val<<endl;  
  73.  }  
  74.  void    PhotoFingerPrint::Find(Mat &src)  
  75.  {  
  76.     string strVal=HashValue(src);  
  77.     hash_map<string,string>::iterator it=m_hashMap.find(strVal);  
  78.     if(it==m_hashMap.end())  
  79.         {cout<<"no photo---------"<<strVal<<endl;}  
  80.     else  
  81.         cout<<"find one , key:  "<<it->first<<"   value:"<<it->second<<endl;    
  82.    
  83.  /* return *it;*/  
  84.  }  
  85.  int PhotoFingerPrint::Distance(string &str1,string &str2)  
  86.  {  
  87.     if((str1.size()!=64)||(str2.size()!=64))  
  88.         return -1;  
  89.     int difference = 0;  
  90.     for(int i=0;i<64;i++)  
  91.     {  
  92.         if(str1[i]!=str2[i])  
  93.             difference++;  
  94.     }  
  95.     return difference;  
  96.  }  
  97.  int main(int argc, char* argv[] )  
  98.  {  
  99.     PhotoFingerPrint pfp;  
  100.     Mat m1=imread("images\\example3.jpg",0);  
  101.     Mat m2=imread("images\\example4.jpg",0);  
  102.     Mat m3=imread("images\\example5.jpg",0);  
  103.     Mat m4=imread("images\\example6.jpg",0);  
  104.     Mat m5;  
  105.     resize(m3,m5,Size(100,100));  
  106.     string str1 = pfp.HashValue(m1);  
  107.     string str2 = pfp.HashValue(m2);  
  108.     string str3 = pfp.HashValue(m3);  
  109.     string str4 = pfp.HashValue(m4);  
  110.     pfp.Insert(m1,string("str1\0"));  
  111.     pfp.Insert(m2,string("str2\0"));  
  112.     pfp.Insert(m3,string("str3\0"));  
  113.     pfp.Insert(m4,string("str4\0"));  
  114.     pfp.Find(m5);  
  115.  //     cout<<pfp.Distance(str1,str1)<<endl;  
  116.  //     cout<<pfp.Distance(str1,str2)<<endl;  
  117.  //     cout<<pfp.Distance(str1,str3)<<endl;  
  118.  //     cout<<pfp.Distance(str1,str4)<<endl;  
  119.    
  120.     return 0;  
  121.  }  
  122.    


好吧,只有当加入足够多的图像,这个哈希表才有意义。本程序给了一个大致的模型,细节都没有进行推敲(hash_map第一次用)。希望大家提点意见。

 

[半原创]指纹识别+谷歌图片识别技术之C++代码

[半原创]指纹识别+谷歌图片识别技术之C++代码,布布扣,bubuko.com

[半原创]指纹识别+谷歌图片识别技术之C++代码

上一篇:C#和C++下数据类型对应表


下一篇:Java核心技术代理