pytorch实现回归

pytorch实现回归

回归

此处回归即用一根曲线近似表示一堆离散点的轨迹。

pytorch实现回归

上图即离散点,下图中的红线即表示离散点轨迹的曲线,求这一曲线的过程就是回归。

pytorch实现回归

pytorch实现

import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy
import os

os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = x.pow(2) + torch.rand(x.size()) * 0.2
x = Variable(x)
y = Variable(y)


# plt.scatter(x.data.numpy(), y.data.numpy())
# plt.show()


class Net(torch.nn.Module):
    def __init__(self, n_input, n_hidden, n_output):
        super(Net, self).__init__()
        self.l1 = torch.nn.Linear(n_input, n_hidden)
        self.l2 = torch.nn.Linear(n_hidden, n_output)

    def forward(self, x):
        x = F.relu(self.l1(x))
        x = self.l2(x)
        return x


net = Net(1, 10, 1)

plt.ion()
plt.show()

optimizer = torch.optim.SGD(net.parameters(), lr=0.2)
loss_func = torch.nn.MSELoss()

for t in range(2000):
    prediction = net(x)  # result from neural network
    loss = loss_func(prediction, y)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    if t % 5 == 0:
        plt.cla()
        plt.scatter(x.data.numpy(), y.data.numpy())
        plt.plot(x.data.numpy(), prediction.data.numpy(), ‘r-‘, lw=5)  # color of line = r,width of line = 5
        plt.text(0.5, 0, ‘Loss=%.4f‘ % loss.data, fontdict={‘size‘: 20, ‘color‘: ‘red‘})
        plt.pause(0.1)
plt.ioff()
plt.show()

输出结果:

pytorch实现回归

代码中Net类就是建立的神经网络,init函数定义神经网络每层的结构,forward定义数据在神经网络中的流向,forward返回值为神经网络末端的输出。

训练前实例化Net类,训练时每一步使用误差反传(第45行loss.backward()),优化器优化(第46行optimizer.step())

pytorch实现回归

上一篇:centos统一管理jdk工具jenv使用


下一篇:011.数据类型-转义字符