思路 :
\(gcd(x,y)=p,1\le x,y \le n \Rightarrow gcd(\frac{x}{p},\frac{y}{p})=1 \Rightarrow gcd(x′,y′)=1,1 \le x′,y′\le \frac{n}{p}\)
所以其实很经典的在矩形(n*n)坐标范围下求 \((x,y)\) 的互质对数.只不过这里的 \(n\) 也是变量.
本题扩展于可见的点
#include <bits/stdc++.h>
using namespace std;
#define IO ios::sync_with_stdio(false);cin.tie(0); cout.tie(0);
inline int lowbit(int x) { return x & (-x); }
#define ll long long
#define ull unsigned long long
#define pb push_back
#define PII pair<int, int>
#define VIT vector<int>
#define x first
#define y second
#define inf 0x3f3f3f3f
const int N = 1e7 + 10;
int pri[N], cnt;
bool st[N];
ll phi[N];
void init() {
phi[1] = 1;
for (int i = 2; i < N; ++i) {
if (!st[i]) {
pri[cnt++] = i;
phi[i] = i - 1;
}
for (int j = 0; pri[j] * i < N; ++j) {
st[pri[j] * i] = true;
if (i % pri[j] == 0) {
phi[pri[j] * i] = phi[i] * pri[j];
break;
}
phi[pri[j] * i] = phi[i] * (pri[j] - 1);
}
}
}
int main() {
IO;
init();
int n;
cin >> n;
phi[1] = 0;
for (int i = 2; i < N; ++i) phi[i] += phi[i - 1];
ll ans = 0;
for (int i = 0; pri[i] <= n; ++i) ans += phi[n / pri[i]] * 2 + 1;
cout << ans << '\n';
return 0;
}