前置知识
(1)毕达哥拉斯定理:\(\sin^2\alpha+\cos^2\beta=1\)
(2)诱导公式:\(\begin{align*}&\sin(2k\pi+\alpha)=\sin\alpha,\cos(2k\pi+\alpha)=\cos\alpha,(k\in Z)\\&\sin(-\alpha)=-\sin\alpha,\cos(-\alpha)=\cos\alpha\\&\sin(\pi+\alpha)=-\sin\alpha,\cos(\pi+\alpha)=-\cos\alpha\end{align*}\)
正弦定理
(1)定理:在\(\vartriangle ABC\)中\(a,b,c\)分别为\(A,B,C\)的对边,则\(\frac a{\sin A}=\frac b{\sin B}=\frac c{\sin C}\)
(2)证明:以\(A\)为原点\(AB\)为\(x\)轴正半轴,把\(\vartriangle ABC\)放在平面直角坐标系上,作\(AB\)边上的高CD,如图1
\(\therefore A(0,0),B(c,0),C(b\cos A,b\sin A),D(b\cos A,0)\)
\(\therefore CD=b\sin A\)
\(\therefore S\vartriangle ABC=\frac12AD\cdot CD=\frac12bc\sin A\)
同理\(S\vartriangle ABC=\frac12ab\sin C=\frac12ac\sin B\)
\(\therefore \frac{\sin A}a=\frac{\sin B}b=\frac{\sin C}c\)
\(\therefore\frac a{\sin A}=\frac b{\sin B}=\frac c{\sin C}\)
(2)扩充了的正弦定理:\(\vartriangle ABC\)有外接圆半径为\(R\),\(a,b,c\)分别为\(A,B,C\)的对边,则\(\frac a{\sin A}=\frac b{\sin B}=\frac c{\sin C}=2R\)
(3)证明:过\(B\)做外接圆的直径\(BD\),连接\(CD\),如图二
\(\therefore \angle A=\angle D,\sin A=\sin D\)
\(\because BD\)为直径
\(\therefore \angle DCB=90^{\circ}\)
\(\therefore\sin D=\frac{BC}{BD}=\frac{a}{2R}\)
\(\therefore \frac a{\sin A}=2R\)
同理\(\frac a{\sin A}=\frac b{\sin B}=\frac c{\sin C}=2R\)
余弦定理
(1)定理:\(\begin{align*}&a^2=b^2+c^2-2bc\cos A\\&b^2=a^2+c^2-2ac\cos B\\&c^2=a^2+b^2-2ab\cos C\end{align*}\)
(2)证明:如图一
\(\therefore A(0,0),B(c,0),C(b\cos A,b\sin A),D(b\cos A,0)\)
\(\therefore CD=b\sin A\)
\(\begin{align*}\therefore a^2&=CD^2+BD^2\\&=b^2\sin^2A+(c-b\cos A)^2\\&=b^2\sin^2A+c^2+b^2\cos^2A-2bc\cos A\\&=b^2+c^2-2bc\cos A\end{align*}\)
同理\(\begin{align*}&a^2=b^2+c^2-2bc\cos A\\&b^2=a^2+c^2-2ac\cos B\\&c^2=a^2+b^2-2ab\cos C\end{align*}\)
和角的余弦和正弦
(1)公式:\(\begin{align}&\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta\\&cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta\end{align}\)
(2)证明:把角\(\alpha,\beta\),顶角放在原点,始边放在坐标系\(x\)正半轴,终边分别放在\(x\)轴两侧,如图三,把\(BC\)绕原点旋转\(\beta\),如图四
\(\therefore B(\cos\alpha,\sin\alpha),C(\cos\beta,-\sin\beta),B'(\cos\ \alpha+\beta,\sin\ \alpha+\beta),C'(1,0)\)
\(\begin{align*}\therefore&BC^2=(\cos\alpha-\cos\beta)^2+(\sin\alpha+\sin\beta)^2=2+2(\sin\alpha\sin\beta-\cos\alpha\cos\beta)\\&B'C'^2=[\cos(\alpha+\beta)-1]^2+\sin^2(\alpha+\beta)=2-2\cos(\alpha+\beta)\end{align*}\)
\(\because BC=B'C'\)
\(\therefore BC^2=B'C'^2\)
\(\therefore \cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta\)
\(\therefore \sin(\alpha+\beta)=\cos(\pi-\alpha-\beta)=\cos(\pi-\alpha)\cos\beta+\sin(\pi-\alpha)\sin\beta=\sin\alpha\cos\beta+\sin\beta\cos\alpha\)
*(3)托勒密定理与和角定理互证:
有\(A,B,C,D\)四点共圆,有四边形\(ABCD\),则\(AB\cdot CD+BC\cdot AD=AC\cdot BD\Leftrightarrow\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta\)
1、\(AB\cdot CD+BC\cdot AD=AC\cdot BD\Rightarrow\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta\)
做\(A,B,C,D\)四点共圆,有直径\(AC\),如图五
\(\because AC为圆O的直径\)
\(\therefore \angle ADC=\angle ABC=90^{\circ}\)
\(\therefore \sin\alpha=\frac{DC}{AC},\cos\alpha=\frac{AD}{AC},\sin\beta=\frac{BC}{AC},\cos\beta=\frac{AB}{AC}\)
\(\therefore\sin\alpha\cos\beta+cos\alpha\sin\beta=\frac{AD\cdot BC+DC\cdot AB}{AC^2}\)
\(\because AB\cdot CD+BC\cdot AD=AC\cdot BD\)
\(\therefore\sin\alpha\cos\beta+cos\alpha\sin\beta=\frac{AC\cdot BD}{AC^2}=\frac{BD}{AC}\)
\(\because\frac{BD}{\sin(\alpha+\beta)}=2R=AC\)
\(\therefore\therefore\sin\alpha\cos\beta+cos\alpha\sin\beta=\sin(\alpha+\beta)\)
2、\(AB\cdot CD+BC\cdot AD=AC\cdot BD\Leftarrow\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta\)
有\(A,B,C,D\)四点共圆,如图六
由正弦定理得\(\begin{align*}&AB\cdot CD+BC\cdot AD=\sin\beta\cdot2R\cdot\sin\alpha\cdot2R+\sin\theta\cdot2R\cdot\sin\gamma\cdot2R\\&AC\cdot BD=\sin(\beta+\theta)\sin(\beta+\gamma)\end{align*}\)
\(
\begin{align*}&\sin\beta\sin\alpha+\sin\theta\sin\gamma\\
&=\sin\beta\sin(\pi-\beta-\theta-\gamma)+\sin\theta\sin\gamma(诱导公式)\\
&=\sin\beta\sin(\beta+\theta+\gamma)+\sin\theta\sin\gamma\\
&=\sin\beta\sin(\beta+\theta)\cos\gamma+\sin\beta\cos(\beta+\theta)\sin\gamma+\sin\theta\sin\gamma\\
&=\sin^2\beta\cos\gamma\cos\theta+\sin\beta\cos\beta\cos\gamma\sin\theta+\sin\beta\sin\gamma\cos\beta\cos\theta-\sin^2\beta\sin\gamma\sin\theta+\sin\theta\sin\gamma(毕达哥拉斯定理)\\
&=\sin\theta\sin\gamma\cos^2\beta+\sin^2\beta\cos\gamma\cos\theta+\sin\beta\cos\beta\cos\gamma\sin\theta+\sin\beta\sin\gamma\cos\beta\cos\theta(因式分解)\\
&=(\cos\beta\sin\theta+\sin\beta\cos\theta)(\cos\beta\sin\gamma+\sin\beta\cos\gamma)(和角的正弦公式)\\
&=\sin(\beta+\theta)\sin(\beta+\gamma)
\end{align*}
\)
\(\therefore AB\cdot CD+BC\cdot AD=AC\cdot BD\)
和差化积与积化和差
(1)积化和差:
\(
\begin{align*}
&\sin\alpha\cos\beta=\frac12[\sin(\alpha+\beta)+\sin(\alpha-\beta)](两角和的正弦公式相加可得)\\
&\cos\alpha\sin\beta=\frac12[\sin(\alpha+\beta)-\sin(\alpha-\beta)](两角和的正弦公式相减可得)\\
&\sin\alpha\sin\beta=\frac12[\cos(\alpha+\beta)+\cos(\alpha-\beta)](两角和的余弦公式相加可得)\\
&\sin\alpha\sin\beta=\frac12[\cos(\alpha+\beta)-\cos(\alpha-\beta)](两角和的余弦公式相减可得)
\end{align*}
\)
(2)和差化积
\(
令\alpha+\beta=A,\alpha-\beta=B,有\alpha=\frac{A+B}2,\beta=\frac{A-B}2,代入积化和差得\\
\sin A+\sin B=2\sin\frac{A+B}2\cos\frac{A-B}2\\
\sin A-\sin B=2\cos\frac{A+B}2\sin\frac{A-B}2\\
\cos A+\cos B=2\cos\frac{A+B}2\cos\frac{A-B}2\\
\cos A-\cos B=-2\sin\frac{A+B}2\sin\frac{A-B}2\\
\)