[1]Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.
[2]Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., & Liang, J. (2018). Unet++: A nested u-net architecture for medical image segmentation. In Deep learning in medical image analysis and multimodal learning for clinical decision support (pp. 3-11). Springer, Cham.
[3]Huang, H., Lin, L., Tong, R., Hu, H., Zhang, Q., Iwamoto, Y., … & Wu, J. (2020, May). Unet 3+: A full-scale connected unet for medical image segmentation. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1055-1059). IEEE.
文章目录
1. 分割中的基本问题
分割任务的挑战:
-
看得深 vs 看得细:
要求网络同时具备抽象与描绘细节的能力
看得深能准确定位识别物体
看得细要求能准确区分边缘细节 -
大 vs 小
要求网络识别多尺度物体的能力
大物体不至于过分割
小物体不至于欠分割
2.1 Unet
网络结构设计重点:
- 上采样(encoder)
- 下采样(decoder)
- 跳层连接(Skip connection)
Q1: Is it the feature extractor important?
Q2: Is it the down-sampling important?
Q3: Is it the up-sampling important?
Q4: Is it the skip connection important?
2.2 Unet++
Q1: How many layers is suitable for a CNN?
- 浅层特征:简单特征,如边界,颜色
- 深层特征:抽象特征,如类别
浅有浅的侧重,深有深的优势。
Q2: How to integrate diverse ‘U-net’s with different layers?
存在缺陷:反向求导中间部分未经过,训练不了
Solution:每个尺度都计算损失函数,即deep supervision
Q3: Does the nested and dense skip connection work well? (Ablation study)
Q4: Does the deep supervision work well?(Ablation study)
Q5: Does the deep supervision work well?(剪枝)
2.3 Unet3+
Q1: How to render the Unet-like network utilize multi-scale features?
Ablation study:
Q2: Does the use of multi-scales features work well?
Q3: Does the use of deep supervision work well?
Q4: How to reduce the over-segmentation?
Ablation study:
Q5: Does the CGM work well?
Q6: Why Unet3+ is more efficient with fewer parameters?