进程环境
进程终止
有8种方式使进程终止,其中5中为正常终止,它们是
1) 从main返回
2) 调用exit
3) 调用_exit或_Exit
4) 最后一个线程从其启动例程返回
5) 最后一个线程调用pthread_exit
异常终止有3中方式
6) 调用abort
7) 接到一个信号并终止
8) 最后一个线程对取消请求做出相应
exit函数
#include <stdlib.h>
void exit(int status);
void _Exit(int status);
#include <unistd.h>
void _exit(int status);
三个函数都带有一个整形参数,成为终止状态。
exit函数总是先执行一个标准I/O库的清理关闭操作:为所以打开流调用fclose函数,这会造成所以缓冲区的输出数据都被冲洗。
exit(0)等价于return(0)。
atexit函数
按照ISO C的规定,一个进程可以登记多达32个函数,这些函数将由exit自动调用。我们称这些函数为终止处理程序,并调用atexit函数来登记这些函数。
#include <stdlib.h> int atexit(void (*function)(void)); 其中,atexit的参数是一个函数地址,当调用此函数时无需向它传送任何参数,也不期望它返回一个值。exit调用这些函数的顺序与他们被atexit登记的顺序相反。同一函数如登记多次,则也会被调用多次。如下是使用atexit的程序。 #include "stdlib.h" #include "stdio.h" static void my_exit1(void); static void my_exit2(void); int main(void) { if (atexit(my_exit2) != 0) perror("can‘t register my_exit2"); if (atexit(my_exit1) != 0) perror("can‘t register my_exit1"); if (atexit(my_exit1) != 0) perror("can‘t register my_exit1"); printf("main is done\n"); return(0); } static void my_exit1(void) { printf("first exit handler\n"); } static void my_exit2(void) { printf("second exit handler\n"); }
输出结果如下:
main is done
first exit handler
first exit handler
second exit handler
命令行参数
内核是程序执行的唯一方法是调用exec函数。当执行一个程序时,exec的进程可将命令行参数传递给该新程序。
C程序的存储空间布局
正文段:这是由CPU执行的机器指令部分。通常正文段是可以共享的。
初始化数据段:通常将此段成为数据段。包含程序中明确赋初值的全局变量或静态变量。
非初始化数据段:通常称此段为BBS段(block startedby ymbol),未赋初值的全局变量或静态变量。在程序执行之前,内核将此段的数据初始化为0或空指针。
栈:自动变量以及每次函数调用时所需保存的信息都存放在此段中。
堆:通常在堆中进行动态存储分配。
C程序典型的存储安排如下所示:
用size命令报告正文段、数据段和bbs段的长度。
环境表和环境变量
环境表
每个程度都会接收到一张环境表。环境表是一个字符指针数组,其中每一个指针包含一个以null结束的C字符串的地址。全局变量environ则包含了该指针数组的地址:
extern char**environ
例如,如果该环境包含5个字符串,则其示意图如下
其中每个字符串结尾都显示的有一个null字符。我们称environ为环境指针,指针数组为环境表,其中各个指针所指字符串为环境字符串。
环境变量
环境字符串的形式通常如下:
name = value
ISO C定义了一个函数getenv用于取环境变量值:
#include <stdlib.h>
char *getenv(const char *name);
此函数返回一个指针,指向name = value字符串中的value。未找到返回NULL。
#include <stdlib.h>
int putenv(char *string);
int setenv(const char *name, const char*value, int overwrite);
int unsetenv(const char *name);
putenv取形式为name = value的字符串,将其放到环境表中。如果name已近存在,则先删除原定义。
setenv将name设置为value。
unsetenv删除name的定义。
环境表和环境字符串通常存储在空间的顶部(栈之上)
setjmp和longjmp
C语言中goto是不能跨越函数的,执行这类跳转功能的函数是setjmp和longjmp。
#include <setjmp.h>
int setjmp(jmp_buf env);
void longjmp(jmp_buf env, int val);
通过程序来看看自动变量、全局变量、寄存器变量、静态变量和易失变量的不同情况:
#include <stdio.h> #include <setjmp.h> static void f1(int, int, int, int); static void f2(void); static jmp_buf jmpbuffer; static int globval; int main(void) { int autoval; register int regival; volatile int volaval; static int statval; globval = 1; autoval = 2; regival = 3; volaval = 4; statval = 5; if (setjmp(jmpbuffer) != 0) { printf("after longjmp:\n"); printf("globval = %d, autoval = %d, regival = %d," " volaval = %d, statval = %d\n", globval, autoval, regival, volaval, statval); exit(0); } /* * Change variables after setjmp, but before longjmp. */ globval = 95; autoval = 96; regival = 97; volaval = 98; statval = 99; f1(autoval, regival, volaval, statval); /* never returns */ exit(0); } static void f1(int i, int j, int k, int l) { printf("in f1():\n"); printf("globval = %d, autoval = %d, regival = %d," " volaval = %d, statval = %d\n", globval, i, j, k, l); f2(); } static void f2(void) { longjmp(jmpbuffer, 1); }
其执行结果如下:
in f1():
globval = 95, autoval = 96, regival = 97,volaval = 98, statval = 99
after longjmp:
globval = 95, autoval = 2, regival = 3,volaval = 98, statval = 99
可见全局变量、静态变量和易失变量不受影响,自动变量和寄存器变量是否变化是不确定的(尽管这里显示恢复setjmp的值)。
getrlimit和setrlimit函数
#include <sys/time.h>
#include <sys/resource.h>
int getrlimit(int resource, struct rlimit*rlim);
int setrlimit(int resource, const structrlimit *rlim);
每个进程都有一组资源限制,其中一些可以用getrlimit和setrlimit函数查询和更改。进程的资源限制通常是在系统初始化时由进程0建立的,然后由每个后序进程继承。