AcWing 1237. 螺旋折线

原题链接

考察:思维

思路:

        考虑四个端点的规律,而不是斜率相同的点的规律.除了第三象限其他端点的值与x、y都很好找.第三象限要进行x+1>=<y分类.代码写繁琐了,y总的思路将点分为在上、下、左、右更好.

 1 #include <iostream>
 2 #include <cstring>
 3 #include <cstdio>
 4 using namespace std;
 5 typedef long long LL;
 6 int main()
 7 {
 8     int x,y;
 9     scanf("%d%d",&x,&y);
10     if(x>=0&&y>=0)
11     {
12        int k = max(x,y);
13        LL t = (LL)(k+k)*(k+k);
14        k = x-y;
15        printf("%lld\n",t+k);
16     }else if(x>=0&&y<=0)
17     {
18         int k = max(x,abs(y));
19         LL t = 2ll*k*(2*k+1);
20         k = abs(y)-x;
21         printf("%lld\n",t+k);
22     }else if(x<0&&y<0)
23     {
24         if(y-x==1) printf("%lld\n",(LL)(y+x)*(y+x));
25         else if(y>x+1)
26         {
27             LL t= abs(x);
28             t = 2*t-1;
29             printf("%lld\n",t*t+y-x-1);
30         }else{
31             LL t = abs(y);
32             t = 2*t+1;
33             printf("%lld\n",t*t+y-x-1);
34         }
35     }else if(x<=0&&y>=0)
36     {
37         int k = max(abs(x),y);
38         LL t = (LL)(2ll*k)*(2*k-1);
39         k = y-abs(x);
40         printf("%lld\n",t+k);
41     }
42     return 0;
43 }

 

AcWing 1237. 螺旋折线

上一篇:C#利用RabbitMQ实现消息总线


下一篇:再谈WPF绑定