Introduction to Mathematical Thinking-Problem 8

8.Prove that if the sequence {an}n=1\left\{a_n\right\}_{n=1}^\infty{an​}n=1∞​ tends to limit L as nn \rightarrow \inftyn→∞, then for any fixed number M>0M>0M>0, the sequence {Man}n=1\left\{M a_n\right\}_{n=1}^\infty{Man​}n=1∞​ tends to the limit MLMLML.

Proof: Because the sequence {an}n=1\left\{a_n\right\}_{n=1}^\infty{an​}n=1∞​ tends to limit L as nn \rightarrow \inftyn→∞, for any ϵ\epsilonϵ, we can find an mmm such that for all nmn\geqslant mn⩾m, we have anLϵ|a_n-L|\leqslant \epsilon∣an​−L∣⩽ϵ.
Multiply both sides by MMM, so we have ManLMϵM|a_n-L|\leqslant M\epsilonM∣an​−L∣⩽Mϵ. By algebra, we haveManMLMϵ|Ma_n-ML|\leqslant M\epsilon∣Man​−ML∣⩽Mϵ, for any MϵM\epsilonMϵ.Therefore, the sequence {Man}n=1\left\{M a_n\right\}_{n=1}^\infty{Man​}n=1∞​ tends to the limit MLMLML.

Introduction to Mathematical Thinking-Problem 8Introduction to Mathematical Thinking-Problem 8 yuh_yeet 发布了8 篇原创文章 · 获赞 0 · 访问量 94 私信 关注
上一篇:Thinking in Java & Writing in Python


下一篇:Introduction to Mathematical Thinking-Problem 5