是什么
内存分配管理器,主要为skiplist即Memtable服务而不是整个项目。申请内存时,将申请到的内存直接放入vector中,在Arena的生命周期结束后,统一释放掉所有申请的内存,内部结构如下图:
为什么要用
- 避免内存碎片,skiplist里面记录的都是用户传进来的key/value,这些字符串有长有短,放到内存中很容易导致内存碎片
学到什么
- 与(&)操作进行内存对齐
- atomic保证原子性
- 使用delete避免拷贝和赋值操作
源码分析
首先看一下内部成员
// Allocation state
char *alloc_ptr_; // 内存偏移量指针,指向未使用内存的首地址
size_t alloc_bytes_remaining_; // 剩下内存数
// Array of new[] allocated memory blocks
std::vector<char*> blocks_; // 存储每次分配的内存指针
// Total memory usage of the arena.
//
// TODO(costan): This member is accessed via atomics, but the others are
// accessed without any locking. Is this OK?
std::atomic<size_t> memory_usage_;
构造函数和析构函数
Arena::Arena() // vector调用默认构造函数初始化
: alloc_ptr_(nullptr), alloc_bytes_remaining_(0), memory_usage_(0) {}
Arena::~Arena() {
for (size_t i = 0; i < blocks_.size(); i++) {
delete[] blocks_[i];
}
}
拷贝构造和拷贝赋值
Arena(const Arena&) = delete;
Arena& operator=(const Arena&) = delete;
主要对外接口
// Return a pointer to a newly allocated memory block of "bytes" bytes.
char* Allocate(size_t bytes);
// Allocate memory with the normal alignment guarantees provided by malloc.
char* AllocateAligned(size_t bytes);
具体实现如下:
inline char* Arena::Allocate(size_t bytes) {
// The semantics of what to return are a bit messy if we allow
// 0-byte allocations, so we disallow them here (we don't need
// them for our internal use).
assert(bytes > 0);
if (bytes <= alloc_bytes_remaining_) { // 需要内存小于剩余内存,直接分配
char *result = alloc_ptr_; // 保存指针,用于返回
alloc_ptr_ += bytes;
alloc_bytes_remaining_ -= bytes;
return result;
}
return AllocateFallback(bytes); // 需要内存大于剩余内存
}
需要内存大于剩余内存时,调用AllocateFallback()分配内存:
- 如果需要内存大于4096/4,则直接分配一块大小为bytes内存,避免每次剩余内存不可用,造成浪费。
- 否则,重新分配一个内存块(默认大小4096)用于存储数据,虽然浪费了当前内存块的剩余内存,但当下次再分配小内存时,可以直接使用,减少内存分配次数。
具体实现如下:
char* Arena::AllocateFallback(size_t bytes) {
if (bytes > kBlockSize / 4) {
// Object is more than a quarter of our block size. Allocate it separately
// to avoid wasting too much space in leftover bytes.
char *result = AllocateNewBlock(bytes);
return result;
}
// We waste the remaining space in the current block.
alloc_ptr_ = AllocateNewBlock(kBlockSize);
alloc_bytes_remaining_ = kBlockSize;
char *result = alloc_ptr_;
alloc_ptr_ += bytes;
alloc_bytes_remaining_ -= bytes;
return result;
}
其中分配新内存块实现如下:
memory_order_relaxed:针对只要求原子操作,除此之外不需要其它同步保证,计数器是一种典型应用场景。
char* Arena::AllocateNewBlock(size_t block_bytes) {
char *result = new char[block_bytes];
blocks_.push_back(result); // 申请块放入vector,以便析构函数释放内存
memory_usage_.fetch_add(block_bytes + sizeof(char*),
std::memory_order_relaxed);
return result;
}
对齐内存分配
char* Arena::AllocateAligned(size_t bytes) {
const int align = (sizeof(void*) > 8) ? sizeof(void*) : 8; // 与系统相关,4或8
static_assert((align & (align - 1)) == 0,
"Pointer size should be a power of 2"); // 确保是2的指数次方
size_t current_mod = reinterpret_cast<uintptr_t>(alloc_ptr_) & (align - 1); // 当前指针模对齐值
size_t slop = (current_mod == 0 ? 0 : align - current_mod); // 还差slop个字节对齐
size_t needed = bytes + slop;
char *result;
if (needed <= alloc_bytes_remaining_) {
result = alloc_ptr_ + slop; // 对齐地址
alloc_ptr_ += needed;
alloc_bytes_remaining_ -= needed;
} else {
// AllocateFallback always returned aligned memory
result = AllocateFallback(bytes);
}
assert((reinterpret_cast<uintptr_t>(result) & (align - 1)) == 0);
return result;
}
读取内存使用
// Returns an estimate of the total memory usage of data allocated
// by the arena.
size_t MemoryUsage() const {
return memory_usage_.load(std::memory_order_relaxed);
}