图像分类数据集的读取

图像分类数据集

(MNIST数据集) :cite:LeCun.Bottou.Bengio.ea.1998
(是图像分类中广泛使用的数据集之一,但作为基准数据集过于简单。
我们将使用类似但更复杂的Fashion-MNIST数据集
) :cite:Xiao.Rasul.Vollgraf.2017

#安装d2l库,(jupyter notebook)
! pip install d2l
! pip install matplotlib==2.2.3
%matplotlib inline
import tensorflow as tf
from d2l import tensorflow as d2l

d2l.use_svg_display()
#读取数据集(划分训练集和测试集)
mnist_train, mnist_test = tf.keras.datasets.fashion_mnist.load_data()
#获取数据信息##################
print(len(mnist_train[0]), len(mnist_test[0]))
##############################
#图片的宽高
print(mnist_train[0][0].shape)
#定义文本标签函数
def get_fashion_mnist_labels(labels):  #@save
    """返回Fashion-MNIST数据集的文本标签"""
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]
#可视化图片函数
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):  #@save
    """绘制图像列表"""
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()
    for i, (ax, img) in enumerate(zip(axes, imgs)):
        ax.imshow(img.numpy())
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    return axes
#对图像进行展示(two row and nine coloum)
X = tf.constant(mnist_train[0][:18])
y = tf.constant(mnist_train[1][:18])
show_images(X, 2, 9, titles=get_fashion_mnist_labels(y));
########################################
#小批量读取
batch_size = 256
train_iter = tf.data.Dataset.from_tensor_slices(
    mnist_train).batch(batch_size).shuffle(len(mnist_train[0]))
###########################################
#测试读取数据所需时间
timer = d2l.Timer()
for X, y in train_iter:
    continue
f'{timer.stop():.2f} sec'
################################
#整合组件
def load_data_fashion_mnist(batch_size, resize=None):   #@save
    """下载Fashion-MNIST数据集,然后将其加载到内存中"""
    mnist_train, mnist_test = tf.keras.datasets.fashion_mnist.load_data()
    # 将所有数字除以255,使所有像素值介于0和1之间,在最后添加一个批处理维度,
    # 并将标签转换为int32。
    process = lambda X, y: (tf.expand_dims(X, axis=3) / 255,
                            tf.cast(y, dtype='int32'))
    resize_fn = lambda X, y: (
        tf.image.resize_with_pad(X, resize, resize) if resize else X, y)
    return (
        tf.data.Dataset.from_tensor_slices(process(*mnist_train)).batch(
            batch_size).shuffle(len(mnist_train[0])).map(resize_fn),
        tf.data.Dataset.from_tensor_slices(process(*mnist_test)).batch(
            batch_size).map(resize_fn)
#数据读取以及转化图片的维度
train_iter, test_iter = load_data_fashion_mnist(32, resize=64)
for X, y in train_iter:
    print(X.shape, X.dtype, y.shape, y.dtype)
    break
#######################################################




小结

  • Fashion-MNIST是一个服装分类数据集,由10个类别的图像组成。我们将在后续章节中使用此数据集来评估各种分类算法。
  • 我们将高度 h h h像素,宽度 w w w像素图像的形状记为 h × w h \times w h×w或( h h h, w w w)。
  • 数据迭代器是获得更高性能的关键组件。依靠实现良好的数据迭代器,利用高性能计算来避免减慢训练过程。
上一篇:编码规范初体验


下一篇:pytorch-------Cnn_mnist