DM9000 LINUX标准驱动S3C2440平台



/*
 *   dm9000.c: Version 1.2 03/18/2003   QQ:1215483516   TEL:18589097498
 *
 *         A Davicom DM9000 ISA NIC fast Ethernet driver for Linux.
 * Copyright (C) 1997 Fly-core   Frank  dai
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 *   (C)Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
 *
 * V0.11 06/20/2001REG_0A bit3=1, default enable BP with DA match
 * 06/22/2001 Support DM9801 progrmming
 * E3: R25 = ((R24 + NF) & 0x00ff) | 0xf000
 * E4: R25 = ((R24 + NF) & 0x00ff) | 0xc200
 *     R17 = (R17 & 0xfff0) | NF + 3
 * E5: R25 = ((R24 + NF - 3) & 0x00ff) | 0xc200
 *     R17 = (R17 & 0xfff0) | NF
 *
 * v1.00               modify by simon 2001.9.5
 *                         change for kernel 2.4.x
 *
 * v1.1   11/09/2001       fix force mode bug
 *
 * v1.2   03/18/2003       Weilun Huang <weilun_huang@davicom.com.tw>:
 * Fixed phy reset.
 * Added tx/rx 32 bit mode.
 * Cleaned up for kernel merge.
 *
 *        03/03/2004    Sascha Hauer <saschahauer@web.de>
 *                      Port to 2.6 kernel
 *
 *  24-Sep-2004   Ben Dooks <ben@simtec.co.uk>
 * Cleanup of code to remove ifdefs
 * Allowed platform device data to influence access width
 * Reformatting areas of code


 */


#if defined(MODVERSIONS)
#include <linux/modversions.h>
#endif


#include <linux/module.h>
#include <linux/ioport.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/version.h>
#include <linux/spinlock.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/dm9000.h>


#include <asm/delay.h>
#include <asm/irq.h>
#include <asm/io.h>


#include "dm9000x.h"


/*
//#include <asm-arm/arch/irqs.h>
//#include <asm-arm/arch/hardware.h>
//#include <asm-arm/arch/regs-gpio.h>
*/ //Deleted by Edwin


////////////////////////////Added by Edwin
//#if defined(CONFIG_DM9000)
#include <asm-arm/arch/regs-mem.h>
#include <asm-arm/arch/regs-gpio.h>
#include <asm-arm/arch/regs-dsc.h>
#include <asm-arm/arch/regs-irq.h>
#include <asm-arm/arch/irqs.h>
//#endif
////////////////////////////


/* Board/System/Debug information/definition ---------------- */
/*
static void *bwscon;
static void *gpfcon;
static void *extint0;
static void *intmsk;
#define BWSCON           (0x48000000)
#define GPFCON           (0x56000050)
#define EXTINT0           (0x56000088)
#define INTMSK           (0x4A000008)
*/ //Deleted by Edwin
#define DM9000_REG00 0x00
#define DM9000_REG05 0x30/* SKIP_CRC/SKIP_LONG */
#define DM9000_REG08 0x27
#define DM9000_REG09 0x38
#define DM9000_REG0A 0xff
#define DM9000_REGFF 0x83/* IMR */


#define DM9000_PHY 0x40/* PHY address 0x01 */


#define TRUE 1
#define FALSE 0


#define CARDNAME "dm9000"
#define PFX CARDNAME ": "


#define DMFE_TIMER_WUT  jiffies+(HZ*2) /* timer wakeup time : 2 second */
#define DMFE_TX_TIMEOUT (HZ*2) /* tx packet time-out time 1.5 s" */


#define DMFE_DEBUG 0//0-->3 Edwin revised to debug


#if DMFE_DEBUG > 2
#define PRINTK3(args...)  printk(CARDNAME ": " args)
#else
#define PRINTK3(args...)  do { } while(0)
#endif


#if DMFE_DEBUG > 1
#define PRINTK2(args...)  printk(CARDNAME ": " args)
#else
#define PRINTK2(args...)  do { } while(0)
#endif


#if DMFE_DEBUG > 0
#define PRINTK1(args...)  printk(CARDNAME ": " args)
#define PRINTK(args...)   printk(CARDNAME ": " args)
#else
#define PRINTK1(args...)  do { } while(0)
#define PRINTK(args...)   printk(KERN_DEBUG args)
#endif


enum DM9000_PHY_mode {
DM9000_10MHD = 0,
DM9000_100MHD = 1,
DM9000_10MFD = 4,
DM9000_100MFD = 5,
DM9000_AUTO = 8
};


/* Structure/enum declaration ------------------------------- */
typedef struct board_info {


u32 runt_length_counter;/* counter: RX length < 64byte */
u32 long_length_counter;/* counter: RX length > 1514byte */
u32 reset_counter;/* counter: RESET */
u32 reset_tx_timeout;/* RESET caused by TX Timeout */
u32 reset_rx_status;/* RESET caused by RX Statsus wrong */


void __iomem *io_addr;/* Register I/O base address */
void __iomem *io_data;/* Data I/O address */
u16 irq; /* IRQ */


u16 tx_pkt_cnt;
u16 dbug_cnt;
u8 reg0, reg5, reg8, reg9, rega;/* registers saved */
u8 op_mode; /* PHY operation mode */
u8 io_mode; /* 0:word, 2:byte */
u8 phy_addr;
u8 device_wait_reset;/* device state */
u8 chip_ver;


void (*inblk)(void __iomem *port, void *data, int length);
void (*outblk)(void __iomem *port, void *data, int length);
void (*dumpblk)(void __iomem *port, int length);


struct resource*addr_res;   /* resources found */
struct resource *data_res;
struct resource*addr_req;   /* resources requested */
struct resource *data_req;
struct resource *irq_res;


struct timer_list timer;
struct net_device_stats stats;
unsigned char srom[128];
spinlock_t lock;


struct mii_if_info mii;
u32 msg_enable;


} board_info_t;


/* Global variable declaration ----------------------------- */
static int dmfe_debug = 0;


/* For module input parameter */
static int debug = 0;
static int mode = DM9000_AUTO;
static int media_mode = DM9000_AUTO;
static u8 reg5 = DM9000_REG05;
static u8 reg8 = DM9000_REG08;
static u8 reg9 = DM9000_REG09;
static u8 rega = DM9000_REG0A;


#ifdef CONFIG_MX1_SCB9328
#include <asm/arch/hardware.h>
#include <asm/arch/irqs.h>
#include <asm/arch/scb9328.h>
#else
static u8 irqline = 3;
#endif


/* function declaration ------------------------------------- */
static int dmfe_probe(struct device *);
static int dmfe_open(struct net_device *);
static int dmfe_start_xmit(struct sk_buff *, struct net_device *);
static int dmfe_stop(struct net_device *);
static int dmfe_do_ioctl(struct net_device *, struct ifreq *, int);




static void dmfe_timer(unsigned long);
static void dmfe_init_dm9000(struct net_device *);


static struct net_device_stats *dmfe_get_stats(struct net_device *);


static irqreturn_t dmfe_interrupt(int, void *, struct pt_regs *);


static int dmfe_phy_read(struct net_device *dev, int phyaddr_unsused, int reg);
static void dmfe_phy_write(struct net_device *dev, int phyaddr_unused, int reg,
  int value);
static u16 read_srom_word(board_info_t *, int);
static void dmfe_rx(struct net_device *);
static void dm9000_hash_table(struct net_device *);


//#define DM9000_PROGRAM_EEPROM
#ifdef DM9000_PROGRAM_EEPROM
static void program_eeprom(board_info_t * db);
#endif
/* DM9000 network board routine ---------------------------- */


static void
dmfe_reset(board_info_t * db)
{
PRINTK1("dm9000x: resetting\n");


/* RESET device */
writeb(DMFE_NCR, db->io_addr);
udelay(200); /* delay 100us */
writeb(NCR_RST, db->io_data);
udelay(200); /* delay 100us */
}


/*
 *   Read a byte from I/O port
 */
static u8
ior(board_info_t * db, int reg)
{
writeb(reg, db->io_addr);
return readb(db->io_data);
}


/*
 *   Write a byte to I/O port
 */


static void
iow(board_info_t * db, int reg, int value)
{
writeb(reg, db->io_addr);
writeb(value, db->io_data);
}


/* routines for sending block to chip */


static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
{
writesb(reg, data, count);
}


static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
{
writesw(reg, data, (count+1) >> 1);
}


static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
{
writesl(reg, data, (count+3) >> 2);
}


/* input block from chip to memory */


static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
{
readsb(reg, data, count+1);
}




static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
{
readsw(reg, data, (count+1) >> 1);
}


static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
{
readsl(reg, data, (count+3) >> 2);
}


/* dump block from chip to null */


static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
{
int i;
int tmp;


for (i = 0; i < count; i++)
tmp = readb(reg);
}


static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
{
int i;
int tmp;


count = (count + 1) >> 1;


for (i = 0; i < count; i++)
tmp = readw(reg);
}


static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
{
int i;
int tmp;


count = (count + 3) >> 2;


for (i = 0; i < count; i++)
tmp = readl(reg);
}


/* dmfe_set_io
 *
 * select the specified set of io routines to use with the
 * device
*/


static void dmfe_set_io(struct board_info *db, int byte_width)
{
/* use the size of the data resource to work out what IO
* routines we want to use
*/


switch (byte_width) {
case 1:
db->dumpblk = dm9000_dumpblk_8bit;
db->outblk  = dm9000_outblk_8bit;
db->inblk   = dm9000_inblk_8bit;
break;


case 2:
db->dumpblk = dm9000_dumpblk_16bit;
db->outblk  = dm9000_outblk_16bit;
db->inblk   = dm9000_inblk_16bit;
break;


case 3:
printk(KERN_ERR PFX ": 3 byte IO, falling back to 16bit\n");
db->dumpblk = dm9000_dumpblk_16bit;
db->outblk  = dm9000_outblk_16bit;
db->inblk   = dm9000_inblk_16bit;
break;


case 4:
default:
db->dumpblk = dm9000_dumpblk_32bit;
db->outblk  = dm9000_outblk_32bit;
db->inblk   = dm9000_inblk_32bit;
break;
}
}




/* dmfe_release_board
 *
 * release a board, and any mapped resources
*/


static void
dmfe_release_board(struct platform_device *pdev, struct board_info *db)
{


if (db->data_res == NULL) {
if (db->addr_res != NULL)
release_mem_region((unsigned long)db->io_addr, 4);
return;
}


/* unmap our resources */


iounmap(db->io_addr);
iounmap(db->io_data);


/* release the resources */
   /*
if (db->data_req != NULL) {
release_resource(db->data_req);
kfree(db->data_req);
}


if (db->addr_res != NULL) {
release_resource(db->data_req);
kfree(db->addr_req);
}
*/


release_resource(db->data_req);
kfree(db->data_req);


release_resource(db->addr_req);
kfree(db->addr_req);
}


/////////////////////////////Added by Edwin
#if defined(CONFIG_DM9000)


static void dm9k1_s3c2440_init(void)
{
unsigned long value;


s3c2410_gpio_cfgpin(S3C2410_GPF7, S3C2410_GPF7_EINT7);
s3c2410_gpio_pullup(S3C2410_GPF7, 0);


value = __raw_readl(S3C2410_EXTINT0);
value &= ~(0x7<<28);
__raw_writel(value|(0x4<<28), S3C2410_EXTINT0); //rising edge
value = __raw_readl(S3C2410_INTMSK);
value &= ~(0x1<<4);
__raw_writel(value, S3C2410_INTMSK);
}


static void dm9k2_s3c2440_init(void)
{
unsigned long value;


//s3c2440_set_dsc(S3C2440_DSC1_CS3, S3C2440_DSC1_CS3_4mA);
s3c2410_gpio_cfgpin(S3C2410_GPG0, S3C2410_GPG0_EINT8); //set eint ping
s3c2410_gpio_pullup(S3C2410_GPG0, 0);


value = __raw_readl(S3C2410_EXTINT1);
value &= ~(0x7<<0);
__raw_writel(value|(0x4<<0), S3C2410_EXTINT1); //rising edge
value = __raw_readl(S3C2410_INTMSK);
value &= ~(0x1<<5);
__raw_writel(value, S3C2410_INTMSK);
}
#endif
/////////////////////////////


#define res_size(_r) (((_r)->end - (_r)->start) + 1)


/*
  Search DM9000 board, allocate space and register it
*/
static int
dmfe_probe(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct dm9000_plat_data *pdata = pdev->dev.platform_data;
struct board_info *db;/* Point a board information structure */
struct net_device *ndev;
unsigned long base;
int ret = 0;
int iosize;
int i;
u32 id_val;
//unsigned char ne_def_eth_mac_addr[]={0x00,0x12,0x34,0x56,0x80,0x49};
unsigned char ne_def_eth_mac_addr1[] = {0x00,0x11,0x22,0x33,0x44,0x55};//Added by Edwin
unsigned char ne_def_eth_mac_addr2[] = {0x66,0x77,0x88,0x99,0xAA,0xBB};


/* bwscon=ioremap_nocache(BWSCON,0x0000004);
gpfcon=ioremap_nocache(GPFCON,0x0000004);
extint0=ioremap_nocache(EXTINT0,0x0000004);
intmsk=ioremap_nocache(INTMSK,0x0000004);


writel(readl(bwscon)|0xc0000,bwscon);
writel( (readl(gpfcon) & ~(0x3 << 14)) | (0x2 << 14), gpfcon);
writel( readl(gpfcon) | (0x1 << 7), gpfcon); // Disable pull-up
writel( (readl(extint0) & ~(0xf << 28)) | (0x4 << 28), extint0); //rising edge
writel( (readl(intmsk))  & ~0x80, intmsk);
*/ //Deleted by Edwin




printk(KERN_INFO "%s Ethernet Driver\n", CARDNAME);


/* Init network device */
ndev = alloc_etherdev(sizeof (struct board_info));
if (!ndev) {
printk("%s: could not allocate device.\n", CARDNAME);
return -ENOMEM;
}


SET_MODULE_OWNER(ndev);
SET_NETDEV_DEV(ndev, dev);


PRINTK2("dmfe_probe()");


/* setup board info structure */
db = (struct board_info *) ndev->priv;
memset(db, 0, sizeof (*db));


if (pdev->num_resources < 2) {
ret = -ENODEV;
goto out;
}


switch (pdev->num_resources) {
case 2:
base = pdev->resource[0].start;


if (!request_mem_region(base, 4, ndev->name)) {
ret = -EBUSY;
goto out;
}


ndev->base_addr = base;
ndev->irq = pdev->resource[1].start;
db->io_addr = (void *)base;
db->io_data = (void *)(base + 4);


#ifdef CONFIG_MX1_SCB9328
db->outblk  = dm9000_outblk_16bit;
db->inblk   = dm9000_inblk_16bit;
db->dumpblk = dm9000_dumpblk_16bit;
#endif
break;


case 3:
db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
db->irq_res  = platform_get_resource(pdev, IORESOURCE_IRQ, 0);


if (db->addr_res == NULL || db->data_res == NULL) {
printk(KERN_ERR PFX "insufficient resources\n");
ret = -ENOENT;
goto out;
}


i = res_size(db->addr_res);
db->addr_req = request_mem_region(db->addr_res->start, i,
 pdev->name);


if (db->addr_req == NULL) {
printk(KERN_ERR PFX "cannot claim address reg area\n");
ret = -EIO;
goto out;
}


db->io_addr = ioremap(db->addr_res->start, i);


if (db->io_addr == NULL) {
printk(KERN_ERR "failed to ioremap address reg\n");
ret = -EINVAL;
goto out;
}


iosize = res_size(db->data_res);
db->data_req = request_mem_region(db->data_res->start, iosize,
 pdev->name);


if (db->data_req == NULL) {
printk(KERN_ERR PFX "cannot claim data reg area\n");
ret = -EIO;
goto out;
}


db->io_data = ioremap(db->data_res->start, iosize);


if (db->io_data == NULL) {
printk(KERN_ERR "failed to ioremap data reg\n");
ret = -EINVAL;
goto out;
}


/* fill in parameters for net-dev structure */


ndev->base_addr = (unsigned long)db->io_addr;
ndev->irq = db->irq_res->start;


/* ensure at least we have a default set of IO routines */
dmfe_set_io(db, iosize);


/* check to see if anything is being over-ridden */
if (pdata != NULL) {
/* check to see if the driver wants to over-ride the
* default IO width */


if (pdata->flags & DM9000_PLATF_8BITONLY)
dmfe_set_io(db, 1);


if (pdata->flags & DM9000_PLATF_16BITONLY)
dmfe_set_io(db, 2);


if (pdata->flags & DM9000_PLATF_32BITONLY)
dmfe_set_io(db, 4);


/* check to see if there are any IO routine
* over-rides */


if (pdata->inblk != NULL)
db->inblk = pdata->inblk;


if (pdata->outblk != NULL)
db->outblk = pdata->outblk;


if (pdata->dumpblk != NULL)
db->dumpblk = pdata->dumpblk;
}
}




dmfe_reset(db);


/* try two times, DM9000 sometimes gets the first read wrong */
for (i = 0; i < 6; i++) {
id_val  = ior(db, DMFE_VIDL);
id_val |= (u32)ior(db, DMFE_VIDH) << 8;
id_val |= (u32)ior(db, DMFE_PIDL) << 16;
id_val |= (u32)ior(db, DMFE_PIDH) << 24;


if (id_val == DM9000_ID)
break;
printk("%s: read wrong id 0x%08x\n", CARDNAME, id_val);
}


if (id_val != DM9000_ID)
{
printk("%s: wrong id: 0x%08x\n", CARDNAME, id_val);
goto release;
}


/* from this point we assume that we have found a DM9000 */

/* I/O mode */
db->io_mode = ior(db, DMFE_ISR) >> 6;/* ISR bit7:6 keeps I/O mode */
db->chip_ver = ior(db, 0x2c);
///////////////////////Added by Edwin
#if defined(CONFIG_DM9000)
if (IRQ_EINT8 == ndev->irq) {
dm9k2_s3c2440_init();
}
else if (IRQ_EINT7 == ndev->irq) {
dm9k1_s3c2440_init();
}
else {
printk(KERN_ERR "%s: wrong irq %d\n", CARDNAME, ndev->irq);
}
#endif


///////////////////////


/* driver system function */
ether_setup(ndev);


ndev->open = &dmfe_open;
ndev->hard_start_xmit    = &dmfe_start_xmit;
ndev->stop = &dmfe_stop;
ndev->get_stats= &dmfe_get_stats;
ndev->set_multicast_list = &dm9000_hash_table;
ndev->do_ioctl= &dmfe_do_ioctl;


#ifdef DM9000_PROGRAM_EEPROM
program_eeprom(db);
#endif
db->msg_enable       = NETIF_MSG_LINK;
db->mii.phy_id_mask  = 0x1f;
db->mii.reg_num_mask = 0x1f;
db->mii.force_media  = 0;
db->mii.full_duplex  = 0;
db->mii.dev     = ndev;
db->mii.mdio_read    = dmfe_phy_read;
db->mii.mdio_write   = dmfe_phy_write;


/* Read SROM content */
for (i = 0; i < 64; i++)
((u16 *) db->srom)[i] = read_srom_word(db, i);


/* Set Node Address */


/* for (i = 0; i < 6; i++)
ndev->dev_addr[i] = ne_def_eth_mac_addr[i];
*/ //Deleted by Edwin


///////////////////////////////////Added by Edwin
#if defined(CONFIG_DM9000)
if (!is_valid_ether_addr(ndev->dev_addr)) {
for (i = 0; i < 6; i++) {
ndev->dev_addr[i]=(IRQ_EINT7 == ndev->irq) ? ne_def_eth_mac_addr1[i] : ne_def_eth_mac_addr2[i];
}
}
#endif
///////////////////////////////////
if (!is_valid_ether_addr(ndev->dev_addr))
printk("%s: Invalid ethernet MAC address.  Please "
      "set using ifconfig\n", ndev->name);


dev_set_drvdata(dev, ndev);
ret = register_netdev(ndev);


if (ret == 0) {
printk("%s: dm9000 at %p,%p IRQ %d MAC: ",
      ndev->name,  db->io_addr, db->io_data, ndev->irq);
for (i = 0; i < 5; i++)
printk("%02x:", ndev->dev_addr[i]);
printk("%02x\n", ndev->dev_addr[5]);
}
return 0;


 release:
 out:
printk("%s: not found (%d).\n", CARDNAME, ret);


dmfe_release_board(pdev, db);
kfree(ndev);


return ret;
}


/*
 *  Open the interface.
 *  The interface is opened whenever "ifconfig" actives it.
 */
static int
dmfe_open(struct net_device *dev)
{
board_info_t *db = (board_info_t *) dev->priv;


PRINTK2("entering dmfe_open\n");


if (request_irq(dev->irq, &dmfe_interrupt, SA_SHIRQ, dev->name, dev))
return -EAGAIN;
// PRINTK3("dmfe_open go on\n");//Added by Edwin
/* Disable all interrupts */
iow(db, DMFE_IMR, IMR_PAR);


#ifdef CONFIG_MX1_SCB9328
set_irq_type(SCB9328_ETH_IRQ, __IRQT_LOWLVL);
#endif


/* Initialize DM9000 board */
// dmfe_reset(db);
dmfe_init_dm9000(dev);


/* Init driver variable */
db->dbug_cnt = 0;
db->runt_length_counter = 0;
db->long_length_counter = 0;
db->reset_counter = 0;
db->device_wait_reset = 0;


/* set and active a timer process */
init_timer(&db->timer);
db->timer.expires  = DMFE_TIMER_WUT * 2;
db->timer.data     = (unsigned long) dev;
db->timer.function = &dmfe_timer;
add_timer(&db->timer);


mii_check_media(&db->mii, netif_msg_link(db), 1);
netif_start_queue(dev);
/* Re-enable interrupt mask */
iow(db, DMFE_IMR, IMR_PAR | IMR_PTM | IMR_PRM);


return 0;
}


/*
 * Set PHY operating mode
 */
static void
set_PHY_mode(struct net_device *dev)
{
board_info_t *db = (board_info_t *) dev->priv;
u16 phy_reg4 = 0x01e1, phy_reg0 = 0x1000;


if (!(db->op_mode & DM9000_AUTO)) {


switch (db->op_mode) {
case DM9000_10MHD:
phy_reg4 = ADVERTISE_10HALF | ADVERTISE_CSMA;
phy_reg0 = 0;
break;
case DM9000_10MFD:
phy_reg4 = ADVERTISE_10FULL | ADVERTISE_CSMA;
phy_reg0 = BMCR_ANENABLE | BMCR_FULLDPLX;
break;
case DM9000_100MHD:
phy_reg4 = ADVERTISE_100HALF | ADVERTISE_CSMA;
phy_reg0 = BMCR_SPEED100;
break;
case DM9000_100MFD:
phy_reg4 = ADVERTISE_100FULL | ADVERTISE_CSMA;
phy_reg0 =
   BMCR_SPEED100 | BMCR_ANENABLE | BMCR_FULLDPLX;
break;
}
}

iow(db, DMFE_GPCR, 0x01);/* Let GPIO0 output */
iow(db, DMFE_GPR, 0x01);/* Disable PHY */
udelay(100):

dmfe_phy_write(dev, 0, MII_BMCR, 0x8000);
udelay(100);
dmfe_phy_write(dev, 0, 0x14, 0x0200);
if(0x1a == db->chip_ver) dmfe_phy_write(dev, 0, 0x1b, 0xe100);

dmfe_phy_write(dev, 0, MII_ADVERTISE, phy_reg4);/* Set PHY media mode */
dmfe_phy_write(dev, 0, MII_BMCR, phy_reg0);/*  Tmp */

iow(db, DMFE_GPR, 0x00);/* Enable PHY */
do
{
udelay(500);
}while(0x46 != ior(db, DMFE_VIDL));


}


/*
 * Initilize dm9000 board
 */
static void
dmfe_init_dm9000(struct net_device *dev)
{
board_info_t *db = (board_info_t *) dev->priv;


PRINTK1("entering %s\n",__FUNCTION__);

if(!(DM9000_PHY & ior(db, DMFE_NSR)))
{
/* Set PHY */
db->op_mode = media_mode;
set_PHY_mode(dev);
}

dmfe_reset(db);

/* Init needed register value */
db->reg0 = DM9000_REG00;


/* User passed argument */
db->reg5 = reg5;
db->reg8 = reg8;
db->reg9 = reg9;
db->rega = rega;


/* Program operating register */
iow(db, DMFE_NCR, db->reg0);
iow(db, DMFE_TCR, 0);       /* TX Polling clear */
iow(db, DMFE_BPTR, 0x3f);   /* Less 3Kb, 200us */
iow(db, DMFE_FCTR, db->reg9);/* Flow Control : High/Low Water */
// iow(db, DMFE_FCR, db->rega);/* Flow Control */
iow(db, DMFE_FCR, 0x28);/* Flow Control */
iow(db, DMFE_NSR, 0x2c);   /* clear TX status */
iow(db, DMFE_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
iow(db, 0x2d, 0x80);
if(0x1a == db->chip_ver)
{
iow(db, 0x38, 0x6b);
iow(db, DMFE_SMCR, 0);       /* Special Mode */
}
else
{
iow(db, 0x38, 0x2b);
iow(db, DMFE_SMCR, 0x08);       /* Special Mode */
}

/* Set address filter table */
dm9000_hash_table(dev);


/* Activate DM9000 */
iow(db, DMFE_RCR, db->reg5 | 1);/* RX enable */
iow(db, DMFE_IMR, DM9000_REGFF);/* Enable TX/RX interrupt mask */


/* Init Driver variable */
db->tx_pkt_cnt = 0;
dev->trans_start = 0;
db->device_wait_reset = 0;
spin_lock_init(&db->lock);
}


/*
 *  Hardware start transmission.
 *  Send a packet to media from the upper layer.
 */
static int
dmfe_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
board_info_t *db = (board_info_t *) dev->priv;


PRINTK3("dmfe_start_xmit\n");


if (db->tx_pkt_cnt > 0)
return 1;


netif_stop_queue(dev);


/* Disable all interrupts */
iow(db, DMFE_IMR, IMR_PAR);

db->tx_pkt_cnt++;
db->stats.tx_packets++;


/* Set TX length to DM9000 */
iow(db, DMFE_TXPLL, skb->len & 0xff);
iow(db, DMFE_TXPLH, (skb->len >> 8) & 0xff);


/* Move data to DM9000 TX RAM */
writeb(DMFE_MWCMD, db->io_addr);
(db->outblk)(db->io_data, skb->data, skb->len);


/* Issue TX polling command */
iow(db, DMFE_TCR, TCR_TXREQ);/* Cleared after TX complete */


dev->trans_start = jiffies;/* saved the time stamp */


/* free this SKB */
dev_kfree_skb(skb);


/* Re-enable interrupt */
iow(db, DMFE_IMR, IMR_PAR | IMR_PTM | IMR_PRM);


return 0;
}


static void
dmfe_shutdown(struct net_device *dev)
{
board_info_t *db = (board_info_t *) dev->priv;


/* RESET devie */
dmfe_phy_write(dev, 0, MII_BMCR, BMCR_RESET);/* PHY RESET */
iow(db, DMFE_GPR, 0x01);/* Power-Down PHY */
udelay(100);
iow(db, DMFE_IMR, IMR_PAR);/* Disable all interrupt */
iow(db, DMFE_RCR, 0x00);/* Disable RX */
}


/*
  Stop the interface.
  The interface is stopped when it is brought.
*/
static int
dmfe_stop(struct net_device *ndev)
{
board_info_t *db = (board_info_t *) ndev->priv;


PRINTK1("entering %s\n",__FUNCTION__);


/* deleted timer */
del_timer(&db->timer);


netif_stop_queue(ndev);
netif_carrier_off(ndev);


/* free interrupt */
free_irq(ndev->irq, ndev);


dmfe_shutdown(ndev);


return 0;
}


/*
  DM9000 interrupt handler
  receive the packet to upper layer, free the transmitted packet
*/


void
dmfe_tx_done(struct net_device *dev, board_info_t * db)
{
int tx_status = ior(db, DMFE_TCR);/* Got TX status */

if(tx_status & TCR_TXREQ)
{
//
}
else
{
if(db->tx_pkt_cnt && !db->device_wait_reset)
{
db->tx_pkt_cnt = 0;
dev->trans_start = 0;
netif_wake_queue(dev);
}
}
}


static irqreturn_t
dmfe_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = dev_id;
board_info_t *db;
int int_status;
u8 reg_save;
// scb9328_ledon(4);
PRINTK3("entering %s\n",__FUNCTION__);


if (!dev) {
PRINTK1("dmfe_interrupt() without DEVICE arg\n");
return IRQ_HANDLED;
}


/* A real interrupt coming */
db = (board_info_t *) dev->priv;
spin_lock(&db->lock);


/* Save previous register address */
reg_save = readb(db->io_addr);


/* Disable all interrupts */
iow(db, DMFE_IMR, IMR_PAR);


/* Got DM9000 interrupt status */
int_status = ior(db, DMFE_ISR);/* Got ISR */
iow(db, DMFE_ISR, int_status);/* Clear ISR status */


/* Received the coming packet */
if (int_status & ISR_PRS)
dmfe_rx(dev);

int_status |= ior(db, DMFE_ISR);/* Got ISR */



/* Trnasmit Interrupt check */
if (int_status & ISR_PTS)
{
iow(db, DMFE_ISR, ISR_PTS);
dmfe_tx_done(dev, db);
}


/* Re-enable interrupt mask */
iow(db, DMFE_IMR, IMR_PAR | IMR_PTM | IMR_PRM);


/* Restore previous register address */
writeb(reg_save, db->io_addr);


spin_unlock(&db->lock);


// scb9328_ledoff(4);
return IRQ_HANDLED;
}


/*
 *  Get statistics from driver.
 */
static struct net_device_stats *
dmfe_get_stats(struct net_device *dev)
{
board_info_t *db = (board_info_t *) dev->priv;
return &db->stats;
}


/*
 *  Process the upper socket ioctl command
 */
static int
dmfe_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
PRINTK1("entering %s\n",__FUNCTION__);
return 0;
}


/*
 *  A periodic timer routine
 *  Dynamic media sense, allocated Rx buffer...
 */
static void
dmfe_timer(unsigned long data)
{
struct net_device *dev = (struct net_device *) data;
board_info_t *db = (board_info_t *) dev->priv;
u8 reg_save;


PRINTK3("dmfe_timer()\n");


/* Save previous register address */
reg_save = readb(db->io_addr);


/* TX timeout check */
if (dev->trans_start
   && ((jiffies - dev->trans_start) > DMFE_TX_TIMEOUT)) {
//printk("tx timeout\n");
db->device_wait_reset = 1;
db->reset_tx_timeout++;
}


/* DM9000 dynamic RESET check and do */
if (db->device_wait_reset) {
netif_stop_queue(dev);
db->reset_counter++;
db->device_wait_reset = 0;
dev->trans_start = 0;
// dmfe_reset(db);
dmfe_init_dm9000(dev);
netif_wake_queue(dev);
}


mii_check_media(&db->mii, netif_msg_link(db), 0);


/* Restore previous register address */
writeb(reg_save, db->io_addr);


/* Set timer again */
db->timer.expires = DMFE_TIMER_WUT;
add_timer(&db->timer);
}


#if 0
/* dump a packet to screen */
static void
dump_packet(unsigned char *buf, int len)
{
int i = 0;
printk("\n------------------------\n");
while (i < len) {
printk("%02x ", buf[i]);
i++;
if (!(i % 8))
printk("\n");
}


printk("----------------------\n");
}
#endif


struct dm9000_rxhdr {
u16 RxStatus;
u16 RxLen;
} __attribute__((__packed__));


/*
 *  Received a packet and pass to upper layer
 */
static void
dmfe_rx(struct net_device *dev)
{
board_info_t *db = (board_info_t *) dev->priv;
struct dm9000_rxhdr rxhdr;
struct sk_buff *skb;
u8 rxbyte, *rdptr;
int GoodPacket;
int RxLen;


/* Check packet ready or not */
do {
ior(db, DMFE_MRCMDX);/* Dummy read */
ior(db, DMFE_ISR);
/* Get most updated data */
rxbyte = ior(db, DMFE_MRCMDX);


if (rxbyte != DM9000_PKT_RDY)
{
/* Status check: this byte must be 0 or 1 */
if (rxbyte > DM9000_PKT_RDY) {
printk("status check failed: %d\n", rxbyte);
iow(db, DMFE_RCR, 0x00);/* Stop Device */
iow(db, DMFE_IMR, IMR_PAR);/* Stop INT request */
db->device_wait_reset = TRUE;
db->reset_rx_status++;
}
return;
}


/* A packet ready now  & Get status/length */
GoodPacket = TRUE;
writeb(DMFE_MRCMD, db->io_addr);


(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));


RxLen = rxhdr.RxLen;


/* Packet Status check */
if (RxLen < 0x40) {
GoodPacket = FALSE;
db->runt_length_counter++;
PRINTK1("Bad Packet received (runt)\n");
}


if (RxLen > DM9000_PKT_MAX) {
PRINTK1("RST: RX Len:%x\n", RxLen);
db->device_wait_reset = TRUE;
db->long_length_counter++;
}


if (rxhdr.RxStatus & 0xbf00) {
GoodPacket = FALSE;
if (rxhdr.RxStatus & 0x100) {
PRINTK1("fifo error\n");
db->stats.rx_fifo_errors++;
}
if (rxhdr.RxStatus & 0x200) {
PRINTK1("crc error\n");
db->stats.rx_crc_errors++;
}
if (rxhdr.RxStatus & 0x8000) {
PRINTK1("length error\n");
db->stats.rx_length_errors++;
}
}


/* Move data from DM9000 */
if (GoodPacket
   && ((skb = dev_alloc_skb(RxLen + 4)) != NULL)) {
skb->dev = dev;
skb_reserve(skb, 2);
rdptr = (u8 *) skb_put(skb, RxLen - 4);


/* Read received packet from RX SRAM */


(db->inblk)(db->io_data, rdptr, RxLen);


/* Pass to upper layer */
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
db->stats.rx_packets++;


} else {
/* need to dump the packet‘s data */


(db->dumpblk)(db->io_data, RxLen);
}
} while (rxbyte == DM9000_PKT_RDY);
}


/*
 *  Read a word data from SROM
 */
static u16
read_srom_word(board_info_t * db, int offset)
{
iow(db, DMFE_EPAR, offset);
iow(db, DMFE_EPCR, EPCR_ERPRR);
udelay(2000); /* according to the datasheet 200us should be enough,
  but it doesn‘t work */
iow(db, DMFE_EPCR, 0x0);
return (ior(db, DMFE_EPDRL) + (ior(db, DMFE_EPDRH) << 8));
}


#ifdef DM9000_PROGRAM_EEPROM
/*
 * Write a word data to SROM
 */
static void
write_srom_word(board_info_t * db, int offset, u16 val)
{
iow(db, DMFE_EPAR, offset);
iow(db, DMFE_EPDRH, ((val >> 8) & 0xff));
iow(db, DMFE_EPDRL, (val & 0xff));
iow(db, DMFE_EPCR, EPCR_WEP | EPCR_ERPRW);
udelay(2000); /* same shit */
iow(db, DMFE_EPCR, 0);
}


/*
 * Only for development:
 * Here we write static data to the eeprom in case
 * we don‘t have valid content on a new board
 */
static void
program_eeprom(board_info_t * db)
{
u16 eeprom[] = { 0x0c00, 0x007f, 0x1300,/* MAC Address */
0x0000, /* Autoload: accept nothing */
0x0a46, 0x9000,/* Vendor / Product ID */
0x0000, /* pin control */
0x0000,
}; /* Wake-up mode control */
int i;
for (i = 0; i < 8; i++)
write_srom_word(db, i, eeprom[i]);
}
#endif




/*
 *  Calculate the CRC valude of the Rx packet
 *  flag = 1 : return the reverse CRC (for the received packet CRC)
 *         0 : return the normal CRC (for Hash Table index)
 */


static unsigned long
cal_CRC(unsigned char *Data, unsigned int Len, u8 flag)
{


       u32 crc = ether_crc_le(Len, Data);


       if (flag)
               return ~crc;


       return crc;
}


/*
 *  Set DM9000 multicast address
 */
static void
dm9000_hash_table(struct net_device *dev)
{
board_info_t *db = (board_info_t *) dev->priv;
struct dev_mc_list *mcptr = dev->mc_list;
int mc_cnt = dev->mc_count;
u32 hash_val;
u16 i, oft, hash_table[4];


PRINTK2("dm9000_hash_table()\n");


for (i = 0, oft = 0x10; i < 6; i++, oft++)
iow(db, oft, dev->dev_addr[i]);


/* Clear Hash Table */
for (i = 0; i < 4; i++)
hash_table[i] = 0x0;


/* broadcast address */
hash_table[3] = 0x8000;


/* the multicast address in Hash Table : 64 bits */
for (i = 0; i < mc_cnt; i++, mcptr = mcptr->next) {
hash_val = cal_CRC((char *) mcptr->dmi_addr, 6, 0) & 0x3f;
hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
}


/* Write the hash table to MAC MD table */
for (i = 0, oft = 0x16; i < 4; i++) {
iow(db, oft++, hash_table[i] & 0xff);
iow(db, oft++, (hash_table[i] >> 8) & 0xff);
}
}




/*
 *   Read a word from phyxcer
 */
static int
dmfe_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
{
board_info_t *db = (board_info_t *) dev->priv;


/* Fill the phyxcer register into REG_0C */
iow(db, DMFE_EPAR, DM9000_PHY | reg);


iow(db, DMFE_EPCR, 0xc);/* Issue phyxcer read command */
do
{
udelay(100); /* Wait read complete */
}while(0x0c != ior(db, DMFE_EPCR));
iow(db, DMFE_EPCR, 0x0);/* Clear phyxcer read command */


/* The read data keeps on REG_0D & REG_0E */
return (ior(db, DMFE_EPDRH) << 8) | ior(db, DMFE_EPDRL);
}


/*
 *   Write a word to phyxcer
 */
static void
dmfe_phy_write(struct net_device *dev, int phyaddr_unused, int reg, int value)
{
board_info_t *db = (board_info_t *) dev->priv;
/* Fill the phyxcer register into REG_0C */
iow(db, DMFE_EPAR, DM9000_PHY | reg);


/* Fill the written data into REG_0D & REG_0E */
iow(db, DMFE_EPDRL, (value & 0xff));
iow(db, DMFE_EPDRH, ((value >> 8) & 0xff));


iow(db, DMFE_EPCR, 0xa);/* Issue phyxcer write command */
do
{
udelay(500); /* Wait write complete */
}while(0x0a != ior(db, DMFE_EPCR));
iow(db, DMFE_EPCR, 0x0);/* Clear phyxcer write command */
}


MODULE_PARM(debug, "i");
MODULE_PARM(mode, "i");
MODULE_PARM(reg5, "i");
MODULE_PARM(reg9, "i");
MODULE_PARM(rega, "i");
MODULE_PARM(nfloor, "i");


static int
dmfe_drv_suspend(struct device *dev, u32 state, u32 level)
{
struct net_device *ndev = dev_get_drvdata(dev);


if (ndev && level == SUSPEND_DISABLE) {
if (netif_running(ndev)) {
netif_device_detach(ndev);
dmfe_shutdown(ndev);
}
}
return 0;
}


static int
dmfe_drv_resume(struct device *dev, u32 level)
{
struct net_device *ndev = dev_get_drvdata(dev);
board_info_t *db = (board_info_t *) ndev->priv;


if (ndev && level == RESUME_ENABLE) {


if (netif_running(ndev)) {
// dmfe_reset(db);
dmfe_init_dm9000(ndev);


netif_device_attach(ndev);
}
}
return 0;
}


static int
dmfe_drv_remove(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct net_device *ndev = dev_get_drvdata(dev);


dev_set_drvdata(dev, NULL);


unregister_netdev(ndev);
dmfe_release_board(pdev, (board_info_t *) ndev->priv);
kfree(ndev); /* free device structure */


PRINTK1("clean_module() exit\n");


return 0;
}


static struct device_driver dmfe_driver = {
.name    = "dm9000",
.bus     = &platform_bus_type,
.probe   = dmfe_probe,
.remove  = dmfe_drv_remove,
.suspend = dmfe_drv_suspend,
.resume  = dmfe_drv_resume,
};


static int __init
dmfe_init(void)
{
if (debug)
dmfe_debug = debug;/* set debug flag */


switch (mode) {
case DM9000_10MHD:
case DM9000_100MHD:
case DM9000_10MFD:
case DM9000_100MFD:
media_mode = mode;
break;
default:
media_mode = DM9000_AUTO;
}


nfloor = (nfloor > 15) ? 0 : nfloor;


return driver_register(&dmfe_driver);/* search board and register */
}


static void __exit
dmfe_cleanup(void)
{
driver_unregister(&dmfe_driver);
}


module_init(dmfe_init);
module_exit(dmfe_cleanup);


MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
MODULE_DESCRIPTION("Davicom DM9000 network driver");
MODULE_LICENSE("GPL");

DM9000 LINUX标准驱动S3C2440平台,布布扣,bubuko.com

DM9000 LINUX标准驱动S3C2440平台

上一篇:linux内核升级图文攻略


下一篇:Vertx Mysql数据库连接 (六)